Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВЫЧИСЛЕНИЕ ОБЫЧНЫХ дифФеренцИальнЫх УРАВНЕНИЙ





Дифференциальные уравнения - это уравнения, в которых неизвестными есть функции одной или нескольких переменных. Эти уравнения имеют соотношение между функциями, которые необходимо найти, и их производными. Если в уравнении присутствуют производные по одной переменной, то это есть обычные дифференциальные уравнения (ОДУ). Найти решение дифференциального уравнения (или проинтегрировать его) - это значит определить неизвестную функцию на заданном интервале изменения ее переменную. Дифференциальное уравнение имеет одно решение, вместе с уравнением заданы начальные условия.

С помощью MathCad можно найти решение задач Коши, для которых заданы начальные условия, и функции, которые необходимо отыскать, т.е. заданные значения этой функции в начальной точке интервала интегрирования уравнения. В большинстве случаев дифференциальное уравнение первого порядка можно записать в стандартной форме (форме Коши):

 

, (1)

 

и только с такой формою уравнения может работать вычислительный процессор MathCad. Вместе с уравнением (1) необходимо задать начальные условия – значение функции у(t0) в некоторой точке t0. Таким образом, необходимо найти функцию у(t) на интервале [t0, t].

Для числового интегрирования в MathCad есть возможность использовать блок Given/Odesolve или встроенные функции. Вычислительный блок Given/Odesolve, который реализовывает решение одного обычного дифференциального уравнения методом Рунге –Кутта, состоит из трех частей:

ключевое слово Given;

дифференциальное уравнение и начальное условие, которые записаны с помощью логических операторов, причем начальное условие должно записываться в форме

 

у(t0)=b;

 

Odesolve(t, t1) – встроенная функция для решения ОДУ относительно переменной t на интервале [t0, t].

Для решения ОДУ можно использовать также встроенные функции rkfixed, Pkadapt, Bestoer.







Дата добавления: 2014-11-10; просмотров: 457. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия