Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. Гидравлические потери на трение – потери при движении жидкости в прямых каналах, трубах (рисунок 4.1)





 

Гидравлические потери на трение – потери при движении жидкости в прямых каналах, трубах (рисунок 4.1), поперечное сечение которых постоянно по форме и площади. Потери на трение обусловлены вязкостным трением слоев жидкости, движущихся внутри потока с разной скоростью, а также трением о внутреннюю поверхность трубы слоев жидкости, движущихся в непосредственной близости от нее. Однако величина потерь на трение определяется не только вязкостью жидкости, но и зависит от скорости ее движения, от площади внутренней поверхности канала и ее шероховатости. Площадь поверхности канала, как известно, зависит от его длины и формы поперечного сечения.

Рисунок 4.1 – К определению гидравлических потерь на трение

 

В расчетах величина потерь на трение подсчитывается по формуле Вейсбаха–Дарси:

(4.1)

где λ – коэффициент гидравлических потерь на трение (по длине);

l – длина прямого участка трубы, м;

dэ – эквивалентный диаметр канала, м.

Коэффициент гидравлических потерь λ является мерой отношения скоростного напора и величины потерь на трение на участке

длиной, равной эквивалентному диаметру канала (см. рисунок 4.1), то есть когда l = dэ. При ламинарном режиме движения коэффициент λ зависит только от числа Рейнольдса:

, (4.2)

а величина потерь на трение для круглой трубы может быть подсчитана как по формуле (4.1) Вейсбаха–Дарси, так и по формуле Пуазейля:

(4.3)

где ν – кинематический коэффициент вязкости жидкости, м2/с;

Q – расход жидкости, м3/с;

d – внутренний диаметр трубы, м.

При турбулентном режиме движения коэффициент λ зависит как от числа Рейнольдса, так и от относительной шероховатости поверхности стенок канала. При этом, как показано в опытах И.И. Никурадзе, при турбулентном режиме существует три области гидравлического трения:

– область гидравлически гладких труб, где λ = f( Re );

– область доквадратичного сопротивления, где λ = f( Re, Δ /d);

– область квадратичного сопротивления (турбулентной автомодельности), где λ = f( Δ /d).

Механизм гидравлического трения в каждой из этих областей зависит от соотношения размеров ламинарного подслоя толщиной δ и размеров шероховатости внутренней поверхности канала Δ (рисунок 4.2).

В области гидравлически гладких труб δ > Δ. Поэтому вязкий подслой покрывает выступы шероховатости, и турбулентное ядро потока не взаимодействует с шероховатостью.

В области доквадратичного сопротивления (δ ≈ Δ) происходит постепенное «раскрывание» шероховатости турбулентным ядром. Здесь имеет место общий случай зависимости λ = f( Re, Δ /d).

И, наконец, в области квадратичного сопротивления, когда выступы полностью «раскрыты», значение λ зависит только от размеров шероховатости.

На практике при расчете технических труб границы областей гидравлического трения определяют в зависимости от предельных чисел Рейнольдса:

(4.4)

(4.5)

где относительная эквивалентная шероховатость;

– эквивалентная шероховатость, характеризующая среднюю высоту выступов технических труб.

Если Re кр < Re < Re пр I, имеем область гидравлически гладких труб. Для расчета коэффициента гидравлического трения рекомендуется формула Блазиуса:

. (4.6)

Если Re пр I < Re < Re пр II, имеем область доквадратичного сопротивления. Для расчета коэффициента λ рекомендуется формула Альтшуля:

(4.7)

 

Если Re > Re пр II, имеем область квадратичного сопротивления. Рекомендуется формула Шифринсона:

(4.8)

Для всех областей и режимов движения жидкости в трубах с естественной шероховатостью коэффициент гидравлического трения можно определить с помощью графика Кольбрука-Мурина.

При установившемся движении жидкости в горизонтальных каналах с постоянным по форме и размерам поперечным сечением средняя скорость потока и, следовательно, скоростной напор одинаковы во всех сечениях. Поэтому уравнение Бернулли (3.3) принимает вид:

откуда

(4.9)

Таким образом, гидравлические потери на трение можно измерить непосредственно (см. рисунок 4.1) как разность Δ h высот уровней h 1 и h 2 жидкости в пьезометрах, установленных в начале и в конце рассматриваемого участка длиной l, то есть

. (4.10)







Дата добавления: 2014-11-10; просмотров: 1390. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия