Студопедия — ОБЩИЕ СВЕДЕНИЯ. При течении жидкости в трубах и каналах различают два основных режима движения - ламинарный и турбулентный
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОБЩИЕ СВЕДЕНИЯ. При течении жидкости в трубах и каналах различают два основных режима движения - ламинарный и турбулентный






При течении жидкости в трубах и каналах различают два основных режима движения - ламинарный и турбулентный. Каждому режиму движения соответствуют свои закономерности, определяющие величину потерь напора на преодоление гидравлических сопротивлений. Точный учет этих потерь – одна из основных задач практической гидравлики, от правильного решения которой во многом зависит надежность инженерных решений.

При малых скоростях жидкость движется упорядоченно в виде отдельных слоев. В пределах одного слоя все частицы жидкости имеют одинаковые скорости. Отдельные слои в потоке жидкости скользят друг по другу не перемешиваясь. Линии тока и траектории частиц определяется формой русла, по которому течет жидкость. Например, в прямой круглой трубе постоянного сечения линии тока – прямые линии, параллельные оси трубы. Такой характер движения жидкости называется ламинарным режимом движения.

При больших скоростях движение частиц жидкости становится беспорядочным, хаотическим. Наблюдаются пульсации скорости и давления в каждой из точек потока, приводящие к перемешиванию частиц. Частицы жидкости движутся по все время изменяющимся траекториям, могут двигаться и поперек течения, и против него, в целом сохраняя общее направление движения. Такое движение жидкости называется турбулентным.

При резком изменении поперечного сечения или направления канала от его стенки отрывается транзитная струя, а у стенки жидкость начинает двигаться в обратном направлении, приводя к вращению жидкости между транзитной струей и стенкой. Эта область называется циркуляционной (вальцовой) зоной.

Для визуализации течений применяют меченые частицы (например, частицы алюминия) или окрашенные (например, чернилами или тушью) струйки, которые показывают траекториидвижения множества частиц жидкости. Они еще называются линиями тока, если течение установившееся. При установившемся (стационарном) течении осредненные значения скорости и давления в каждой точке потока постоянны во времени. В этом случае расход, т.е. количество жидкости, проходящее через заданное сечение в единицу времени, также не изменяется во времени.

Режим движения жидкости определяется безразмерным числом, учитывающим основные характеристики потока, которое называется числом Рейнольдса в честь английского физика О. Рейнольдса, изучавшего режимы движения жидкости и условия существования различных режимов движения.

Число Рейнольдса в общем случае находится по формуле

 

Re=, (6)

 

где v - средняя скорость;

L - характерный линейный размер русла, м;

ρ - плотность жидкости, кг/м3;

μ - динамический коэффициент вязкости, Па۰ с;

или, учитывая, что кинематический коэффициент вязкости n=, м2/с, по формуле:

 

Re=, (7)

 

Если жидкость движется в цилиндрических трубах, за характерный линейный размер принимается внутренний диаметр трубы, т.е. d и формула для определения числа Рейнольдса принимает вид:

 

Re=(8)

 

или

 

Re=, (9)

 

Т. к. средняя скорость v=Q/ω, а площадь поперечного сечения цилиндрической трубы ω = π d2/4, число Рейнольдса можно определить через расход жидкости:

 

Re=. (10)

 

Если жидкость движется в трубах и каналах некруглого поперечного сечения, характерный размер L=4R, где R–гидравлический радиус. Гидравлическим радиусом называется отношение площади живого сечения потока ω, м2, к длине смоченного периметра Ã, м, т.е. длине периметра живого сечения, на которой жидкость соприкасается со стенками русла, м

 

R=. (11)

 

В этом случае число Рейнольдса определяется по формулам:

 

Re=, Re=, Re=. (12)

 

Число Рейнольдса является также одним из основных критериев подобия при течении жидкостей и газов. Это число выражает, отношение сил инерции к силам трения в потоке вязкой жидкости. Малое число Рейнольдса показывает, что в потоке велики силы трения, стремящиеся упорядочить движение частиц и подавить случайно возникающие возмущения, в результате чего поток движется ламинарно. Большое число Рейнольдса свидетельствует о преобладании в потоке сил инерции, поэтому возникающие возмущения быстро развиваются и жидкость движется турбулентно.

Смена режимов движения жидкости происходит не внезапно, а постепенно в некотором диапазоне скоростей, называемом переходной областью. Скорость, при которой происходит переход от турбулентного движения к ламинарному, имеет меньшее значение, чем скорость, при которой происходит переход от ламинарного режима к турбулентному. Поэтому скорость, при которой режим движения переходит от ламинарного к турбулентному, называется верхней критической скоростью VВК, а скорость, при которой турбулентный режим переходит в ламинарный, - нижней критической скоростью vHК. В переходной области режим движения неустойчив и под влиянием случайных факторов может принимать как ту, так и другую формы. Жидкость в переходной области может временами двигаться то ламинарно, то турбулентно. Это явление называется перемежаемостью течения.

Число Рейнольдса, вычисленное при значении v = vHК, называется нижним критическим числом Рейнольдса (ReНК), а при v= vВК верхним критическим числом Рейнольдса (ReВК). Если Re< ReНК, наблюдается устойчивый ламинарный режим движения жидкости, а если Re> ReВК – возможен только турбулентный режим.

Величины ReНК и ReВК определяются экспериментально. Они зависят, от ряда причин: таких, как форма потока, степень возмущений в жидкости, содержание газа и твердых частиц в жидкости и др. На основании проведенных исследований установлено, что нижнее критическое число Рейнольдса изменяется незначительно и для цилиндрических труб лежит в пределах 2000...2320. Верхняя же граница критического числа Рейнольдса не имеет определенного значения. Тщательно предупреждая начальные возмущения, удавалось наблюдать переход ламинарного течения в турбулентное при числах Рейнольдса, равных 12 000 (А.В.Саф и Е.Х. Шодер), 22 000 (Л.Шиллер) и даже 54 000 (Х.Т.Барнес и Е.Д.Кокер). Такое затянутое ламинарное движение очень неустойчиво и при малейших возмущениях сразу же переходит в турбулентное.

При выполнении, инженерных расчетов – принято определять режим движения жидкости сравнением числа Рейнольдса, вычисленного для потока жидкости, с нижним критическим числом Рейнольдса, которое называют просто критическим числом Рейнольдса и обозначают ReКР. Для труб круглого поперечного сечения принимают ReКР=2320, а для безнапорных труб и русел некруглого сечения ReКР =580. Если Rе< ReКР, режим движения считают ламинарным, если Rе ≥ ReКР, - турбулентным.

 







Дата добавления: 2014-11-10; просмотров: 1247. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия