Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотезы о показательном распределении





Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[0.63, 16.04, 6.09, 3.42, 9.25, 2.87, 1.34, 11.24, 4.96, 3.74,

9.25, 1.71, 20.96, 6.72, 8.71, 1.06, 19.12, 0.02, 8.58, 31.52,

0.29, 8.13, 17.40, 1.62, 3.13, 18.48, 30.30, 9.16, 2.39, 1.48,

5.28, 13.82, 1.77, 2.26, 1.70, 7.87, 9.74, 21.21, 7.79,.67,

18.76, 8.34, 1.87, 7.02, 2.32, 2.43, 3.07, 4.85, 5.14, 5.85,

1.14, 2.78, 4.99, 7.51, 2.59, 2.00, 11.62, 1.65, 9.02, 1.51,

11.21, 22.13, 0.48, 13.20, 12.34, 5.25, 5.73, 0.72, 14.11, 9.62,

13.54, 12.87, 27.11, 1.08, 5.94, 1.86, 30.53, 6.30, 20.13, 3.41];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и длину интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

 

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о показательном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

 

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания a (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> a: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

 

Находим точечную оценку параметра показательного распределения:

> lambda: =1/a;

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =int(lambda*exp(-lambda*t), t=0..Z[2]);

p[k]: =int(lambda*exp(-lambda*t), t=Z[k]..infinity);

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам :

> for j from 2 to k-1 do p[j]: =int(lambda*exp(-lambda*t), t=Z[j]..Z[j+1]) od;

Находим теоретические частоты npi:

> for j from 1 to k do n*p[j] od;

Так как на трёх последних интервалах npi < 5, то объединим эти интервалы и пересчитаем соответствующие вероятности и частоты, при этом число интервалов будет 5:

> p[5]: = p[5]+p[6]+p[7]; Y3f[5]: =Y3f[5]+Y3f[6]+Y3f[7];

 

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле , где i = = 1, 2, …, 5, так как три последних интервала объединили.

> chi2: =sum((Y3f[i]-n*p[i])^2/(n*p[i]), i=1..5);

По таблице критических точек распределения , по заданномууровню значимости aи числу степеней свободы ν = s- l -1 (s число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = 5, l = 1, т.е. ν = 5-1-1=3, тогда .

Так как , то гипотеза о показательном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =piecewise(x< 0, 0, x> =0, evalf(lambda*exp(-lambda*x)));

> f1: =plot(f, x=-10..ymax+10):

> plots[display](Hist, f1);

Запишем гипотетическую функцию распределения

и построим её график.

> F: =piecewise(x< 0, 0, x> =0, 1-exp(-lambda*x));

> F1: =plot(F, x=-10..ymax+10):

> plots[display](F1);

Контрольные вопросы к лабораторным работам 4 и 5

1. Что называется генеральной совокупностью, выборкой, реализацией выборки? Привести примеры.

2. Как построить сгруппированный и интервальный статистические ряды?

3. В чём заключается выборочный метод построения математической модели эксперимента?

4. Что называется эмпирической функцией распределения? Какими свойствами она обладает?

5. В чём состоит отличие эмпирической функции распределения от теоретической?

6. Как построить гистограмму частот, относительных частот?

Что называется статистикой, оценкой неизвестного параметра?

7. Какая оценка называется состоятельной, несмещённой, эффективной?

8. Какие оценки математического ожидания и дисперсии генеральной совокупности вы знаете?

9. Что такое интервальная оценка и чем она отличается от точечной?

10.Что такое статистическая, нулевая и альтернативная гипотезы? Какую гипотезу называют простой, сложной, параметрической, непараметрической?

11. Дайте определение статистического критерия. Что такое ошибки первого и второго рода?

12. Какую гипотезу вы проверяете в этой работе? На какой статистике строится соответствующий критерий? Как найти число степеней свободы?

13. Какой смысл имеет уровень значимости критерия?

14. Опишите подробно критерий Пирсона.








Дата добавления: 2014-11-10; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия