Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотезы о показательном распределении





Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[0.63, 16.04, 6.09, 3.42, 9.25, 2.87, 1.34, 11.24, 4.96, 3.74,

9.25, 1.71, 20.96, 6.72, 8.71, 1.06, 19.12, 0.02, 8.58, 31.52,

0.29, 8.13, 17.40, 1.62, 3.13, 18.48, 30.30, 9.16, 2.39, 1.48,

5.28, 13.82, 1.77, 2.26, 1.70, 7.87, 9.74, 21.21, 7.79,.67,

18.76, 8.34, 1.87, 7.02, 2.32, 2.43, 3.07, 4.85, 5.14, 5.85,

1.14, 2.78, 4.99, 7.51, 2.59, 2.00, 11.62, 1.65, 9.02, 1.51,

11.21, 22.13, 0.48, 13.20, 12.34, 5.25, 5.73, 0.72, 14.11, 9.62,

13.54, 12.87, 27.11, 1.08, 5.94, 1.86, 30.53, 6.30, 20.13, 3.41];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и длину интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

 

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о показательном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

 

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания a (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> a: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

 

Находим точечную оценку параметра показательного распределения:

> lambda: =1/a;

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =int(lambda*exp(-lambda*t), t=0..Z[2]);

p[k]: =int(lambda*exp(-lambda*t), t=Z[k]..infinity);

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам :

> for j from 2 to k-1 do p[j]: =int(lambda*exp(-lambda*t), t=Z[j]..Z[j+1]) od;

Находим теоретические частоты npi:

> for j from 1 to k do n*p[j] od;

Так как на трёх последних интервалах npi < 5, то объединим эти интервалы и пересчитаем соответствующие вероятности и частоты, при этом число интервалов будет 5:

> p[5]: = p[5]+p[6]+p[7]; Y3f[5]: =Y3f[5]+Y3f[6]+Y3f[7];

 

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле , где i = = 1, 2, …, 5, так как три последних интервала объединили.

> chi2: =sum((Y3f[i]-n*p[i])^2/(n*p[i]), i=1..5);

По таблице критических точек распределения , по заданномууровню значимости aи числу степеней свободы ν = s- l -1 (s число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = 5, l = 1, т.е. ν = 5-1-1=3, тогда .

Так как , то гипотеза о показательном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =piecewise(x< 0, 0, x> =0, evalf(lambda*exp(-lambda*x)));

> f1: =plot(f, x=-10..ymax+10):

> plots[display](Hist, f1);

Запишем гипотетическую функцию распределения

и построим её график.

> F: =piecewise(x< 0, 0, x> =0, 1-exp(-lambda*x));

> F1: =plot(F, x=-10..ymax+10):

> plots[display](F1);

Контрольные вопросы к лабораторным работам 4 и 5

1. Что называется генеральной совокупностью, выборкой, реализацией выборки? Привести примеры.

2. Как построить сгруппированный и интервальный статистические ряды?

3. В чём заключается выборочный метод построения математической модели эксперимента?

4. Что называется эмпирической функцией распределения? Какими свойствами она обладает?

5. В чём состоит отличие эмпирической функции распределения от теоретической?

6. Как построить гистограмму частот, относительных частот?

Что называется статистикой, оценкой неизвестного параметра?

7. Какая оценка называется состоятельной, несмещённой, эффективной?

8. Какие оценки математического ожидания и дисперсии генеральной совокупности вы знаете?

9. Что такое интервальная оценка и чем она отличается от точечной?

10.Что такое статистическая, нулевая и альтернативная гипотезы? Какую гипотезу называют простой, сложной, параметрической, непараметрической?

11. Дайте определение статистического критерия. Что такое ошибки первого и второго рода?

12. Какую гипотезу вы проверяете в этой работе? На какой статистике строится соответствующий критерий? Как найти число степеней свободы?

13. Какой смысл имеет уровень значимости критерия?

14. Опишите подробно критерий Пирсона.








Дата добавления: 2014-11-10; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия