Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотезы о равномерном распределении





Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[10.63, 26.04, 6.09, 23.42, 5.25, 24.87, 3.24, 6.24, 4.96, 13.74,

13.25, 21.71, 20.96, 34.72, 8.71, 9.06, 19.12, 20.02, 8.58, 34.52,

14.29, 32.13, 13.40, 26.62, 20.13, 6.48, 30.30, 9.16, 12.39, 21.48,

5.28, 13.82, 21.77, 32.26, 21.70, 7.87, 29.74, 21.11, 17.79, 17.67,

27.76, 27.34, 5.87, 5.02, 12.32, 25.43, 31.07, 24.85, 15.14, 25.85,

7.14, 12.78, 24.99, 27.51, 22.59, 29.00, 34.62, 17.65, 9.02, 21.51,

11.24, 22.13, 10.48, 13.20, 12.34, 25.25, 31.73, 28.72, 14.11, 9.62,

17.54, 12.87, 27.15, 18.08, 19.94, 29.86, 30.53, 10.30, 33.13, 23.41];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и дли-ну интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о равномерном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания m (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> m: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

Находим точечные оценки параметров равномерного распределения: , где

> a: = m-sqrt(3.0)*s1; b: = m+sqrt(3.0)*s1;

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =(Z[2]-a)/(b-a);

> p[k]: =(b-Z[k])/(b-a);

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам :

> for j from 2 to 6 do p[j]: =(Z[j+1]-Z[j])/(b-a) od;

Находим теоретические частоты npi:

> for j from 1 to k do n*p[j] od;

Так как все npi > 5, то пересчёт не делаем, число интервалов остаётся прежним: k = 7.

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле .

> chi2: =sum((Y3f[i]-n*p[i])^2/(n*p[i]), i=1..7);

По таблице критических точек распределения , по заданномууровню значимости aи числу степеней свободы ν = s- l- 1 (s число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = k = 7, l = 2, т.е. ν = 7-2-1=4, тогда .

Так как , то гипотеза о равномерном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения

и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =piecewise(x< a, 0, x> =a and x< =b, 1/(b-a), x> b, 0);

> f1: =plot(f, x=ymin-1..ymax+1):

> plots[display](Hist, f1);

Запишем гипотетическую функцию распределения

и построим её график.

> F: =piecewise(x< a, 0, x> =a and x< =b, (x-a)/(b-a), x> b, 1);

> F1: =plot(F, x=0..ymax+10):

> plots[display](F1);

 







Дата добавления: 2014-11-10; просмотров: 603. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2026 год . (0.015 сек.) русская версия | украинская версия