Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры выполнения работы





Проверка гипотезы о нормальном распределении

Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[15.41, 13.32, 14.28, 12.26, 12.70, 13.97, 10.89, 13.46, 12.79,

13.96, 15.83, 13.27, 14.19, 14.78, 13.35, 16.56, 14.22, 13.26, 13.46,

14.98, 14.30, 14.23, 14.99, 11.90, 15.34, 13.80, 12.13, 13.06, 13.37,

13.69, 12.15, 14.50, 13.34, 13.37, 14.06, 15.82, 11.85, 12.30, 11.86,

12.86, 13.87, 16.39, 12.49, 13.93, 15.33, 14.44, 13.96, 14.74, 16.09,

12.65, 13.40, 13.44, 14.54, 13.23, 12.86, 15.91, 14.54, 12.16, 14.42,

14.76, 13.60, 12.86, 13.60, 13.58, 13.91, 13.49, 13.82, 15.51, 13.92,

15.59, 12.44, 15.70, 14.71, 15.61, 12.88, 11.79, 13.23, 11.79, 16.06,

12.29];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и длину интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

 

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

 

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о нормальном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

.

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания a (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> a: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

.

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

.

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=-infinity..Z[2]));

.

> p[k]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[k]..infinity));

.

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам , где :

> for i from 2 to k-1 do p[i]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[i]..Z[i+1])) od;

Находим теоретические частоты npi:

> for i from 1 to k do n*p[i] od;

Так как на первом и последнем интервалах npi < 5, то объединим 1-й со 2-м и 6-й с 7-м интервалы и пересчитаем соответствующие вероятности и частоты:

> p[2]: =p[1]+p[2]; Y3f[2]: =Y3f[1]+Y3f[2]; p[6]: =p[6]+p[7]; Y3f[6]: = Y3f[6] +Y3f[7];

.

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле , где i = 2, 3, …, 6, так как два первых и два последних интервала объединили.

> chi2: =sum((Y3f[j]-n*p[j])^2/(n*p[j]), j=2..6);

.

По таблице критических точек распределения , по заданномууровню значимости a и числу степеней свободы ν = s-l-1 (s – число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = 5, l = 2, т.е. ν = 5-2-1=2, тогда .

Так как , то гипотеза о нормальном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =evalf(1/(sqrt(2*Pi)*s1)*exp(-(x-a)^2/(2*S1)));

> f1: =plot(f, x=ymin-2..ymax+2):

> plots[display](Hist, f1);

 

Запишем гипотетическую функцию распределения и построим её график.

> F: =evalf(1/(sqrt(2*Pi)*s1))*Int(exp(-(t-a)^2/(2*S1)), t=-infinity..x);

> F1: =plot(F, x=ymin-2..ymax+2):

> plots[display](F1);







Дата добавления: 2014-11-10; просмотров: 627. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2026 год . (0.007 сек.) русская версия | украинская версия