Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры выполнения работы





Проверка гипотезы о нормальном распределении

Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[15.41, 13.32, 14.28, 12.26, 12.70, 13.97, 10.89, 13.46, 12.79,

13.96, 15.83, 13.27, 14.19, 14.78, 13.35, 16.56, 14.22, 13.26, 13.46,

14.98, 14.30, 14.23, 14.99, 11.90, 15.34, 13.80, 12.13, 13.06, 13.37,

13.69, 12.15, 14.50, 13.34, 13.37, 14.06, 15.82, 11.85, 12.30, 11.86,

12.86, 13.87, 16.39, 12.49, 13.93, 15.33, 14.44, 13.96, 14.74, 16.09,

12.65, 13.40, 13.44, 14.54, 13.23, 12.86, 15.91, 14.54, 12.16, 14.42,

14.76, 13.60, 12.86, 13.60, 13.58, 13.91, 13.49, 13.82, 15.51, 13.92,

15.59, 12.44, 15.70, 14.71, 15.61, 12.88, 11.79, 13.23, 11.79, 16.06,

12.29];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и длину интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

 

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

 

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о нормальном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

.

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания a (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> a: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

.

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

.

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=-infinity..Z[2]));

.

> p[k]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[k]..infinity));

.

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам , где :

> for i from 2 to k-1 do p[i]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[i]..Z[i+1])) od;

Находим теоретические частоты npi:

> for i from 1 to k do n*p[i] od;

Так как на первом и последнем интервалах npi < 5, то объединим 1-й со 2-м и 6-й с 7-м интервалы и пересчитаем соответствующие вероятности и частоты:

> p[2]: =p[1]+p[2]; Y3f[2]: =Y3f[1]+Y3f[2]; p[6]: =p[6]+p[7]; Y3f[6]: = Y3f[6] +Y3f[7];

.

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле , где i = 2, 3, …, 6, так как два первых и два последних интервала объединили.

> chi2: =sum((Y3f[j]-n*p[j])^2/(n*p[j]), j=2..6);

.

По таблице критических точек распределения , по заданномууровню значимости a и числу степеней свободы ν = s-l-1 (s – число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = 5, l = 2, т.е. ν = 5-2-1=2, тогда .

Так как , то гипотеза о нормальном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =evalf(1/(sqrt(2*Pi)*s1)*exp(-(x-a)^2/(2*S1)));

> f1: =plot(f, x=ymin-2..ymax+2):

> plots[display](Hist, f1);

 

Запишем гипотетическую функцию распределения и построим её график.

> F: =evalf(1/(sqrt(2*Pi)*s1))*Int(exp(-(t-a)^2/(2*S1)), t=-infinity..x);

> F1: =plot(F, x=ymin-2..ymax+2):

> plots[display](F1);







Дата добавления: 2014-11-10; просмотров: 627. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия