Студопедия — Примеры выполнения работы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры выполнения работы






Проверка гипотезы о нормальном распределении

Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[15.41, 13.32, 14.28, 12.26, 12.70, 13.97, 10.89, 13.46, 12.79,

13.96, 15.83, 13.27, 14.19, 14.78, 13.35, 16.56, 14.22, 13.26, 13.46,

14.98, 14.30, 14.23, 14.99, 11.90, 15.34, 13.80, 12.13, 13.06, 13.37,

13.69, 12.15, 14.50, 13.34, 13.37, 14.06, 15.82, 11.85, 12.30, 11.86,

12.86, 13.87, 16.39, 12.49, 13.93, 15.33, 14.44, 13.96, 14.74, 16.09,

12.65, 13.40, 13.44, 14.54, 13.23, 12.86, 15.91, 14.54, 12.16, 14.42,

14.76, 13.60, 12.86, 13.60, 13.58, 13.91, 13.49, 13.82, 15.51, 13.92,

15.59, 12.44, 15.70, 14.71, 15.61, 12.88, 11.79, 13.23, 11.79, 16.06,

12.29];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и длину интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

 

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

 

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о нормальном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

.

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания a (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> a: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

.

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

.

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=-infinity..Z[2]));

.

> p[k]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[k]..infinity));

.

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам , где :

> for i from 2 to k-1 do p[i]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[i]..Z[i+1])) od;

Находим теоретические частоты npi:

> for i from 1 to k do n*p[i] od;

Так как на первом и последнем интервалах npi < 5, то объединим 1-й со 2-м и 6-й с 7-м интервалы и пересчитаем соответствующие вероятности и частоты:

> p[2]: =p[1]+p[2]; Y3f[2]: =Y3f[1]+Y3f[2]; p[6]: =p[6]+p[7]; Y3f[6]: = Y3f[6] +Y3f[7];

.

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле , где i = 2, 3, …, 6, так как два первых и два последних интервала объединили.

> chi2: =sum((Y3f[j]-n*p[j])^2/(n*p[j]), j=2..6);

.

По таблице критических точек распределения , по заданномууровню значимости a и числу степеней свободы ν = s-l-1 (s – число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = 5, l = 2, т.е. ν = 5-2-1=2, тогда .

Так как , то гипотеза о нормальном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =evalf(1/(sqrt(2*Pi)*s1)*exp(-(x-a)^2/(2*S1)));

> f1: =plot(f, x=ymin-2..ymax+2):

> plots[display](Hist, f1);

 

Запишем гипотетическую функцию распределения и построим её график.

> F: =evalf(1/(sqrt(2*Pi)*s1))*Int(exp(-(t-a)^2/(2*S1)), t=-infinity..x);

> F1: =plot(F, x=ymin-2..ymax+2):

> plots[display](F1);







Дата добавления: 2014-11-10; просмотров: 593. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия