Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры выполнения работы





Проверка гипотезы о нормальном распределении

Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[15.41, 13.32, 14.28, 12.26, 12.70, 13.97, 10.89, 13.46, 12.79,

13.96, 15.83, 13.27, 14.19, 14.78, 13.35, 16.56, 14.22, 13.26, 13.46,

14.98, 14.30, 14.23, 14.99, 11.90, 15.34, 13.80, 12.13, 13.06, 13.37,

13.69, 12.15, 14.50, 13.34, 13.37, 14.06, 15.82, 11.85, 12.30, 11.86,

12.86, 13.87, 16.39, 12.49, 13.93, 15.33, 14.44, 13.96, 14.74, 16.09,

12.65, 13.40, 13.44, 14.54, 13.23, 12.86, 15.91, 14.54, 12.16, 14.42,

14.76, 13.60, 12.86, 13.60, 13.58, 13.91, 13.49, 13.82, 15.51, 13.92,

15.59, 12.44, 15.70, 14.71, 15.61, 12.88, 11.79, 13.23, 11.79, 16.06,

12.29];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и длину интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

 

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

 

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о нормальном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

.

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания a (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> a: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

.

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

.

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=-infinity..Z[2]));

.

> p[k]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[k]..infinity));

.

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам , где :

> for i from 2 to k-1 do p[i]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[i]..Z[i+1])) od;

Находим теоретические частоты npi:

> for i from 1 to k do n*p[i] od;

Так как на первом и последнем интервалах npi < 5, то объединим 1-й со 2-м и 6-й с 7-м интервалы и пересчитаем соответствующие вероятности и частоты:

> p[2]: =p[1]+p[2]; Y3f[2]: =Y3f[1]+Y3f[2]; p[6]: =p[6]+p[7]; Y3f[6]: = Y3f[6] +Y3f[7];

.

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле , где i = 2, 3, …, 6, так как два первых и два последних интервала объединили.

> chi2: =sum((Y3f[j]-n*p[j])^2/(n*p[j]), j=2..6);

.

По таблице критических точек распределения , по заданномууровню значимости a и числу степеней свободы ν = s-l-1 (s – число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = 5, l = 2, т.е. ν = 5-2-1=2, тогда .

Так как , то гипотеза о нормальном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =evalf(1/(sqrt(2*Pi)*s1)*exp(-(x-a)^2/(2*S1)));

> f1: =plot(f, x=ymin-2..ymax+2):

> plots[display](Hist, f1);

 

Запишем гипотетическую функцию распределения и построим её график.

> F: =evalf(1/(sqrt(2*Pi)*s1))*Int(exp(-(t-a)^2/(2*S1)), t=-infinity..x);

> F1: =plot(F, x=ymin-2..ymax+2):

> plots[display](F1);







Дата добавления: 2014-11-10; просмотров: 627. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия