Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

IV. ДВОЙСТВЕННЫЕ ЗАДАЧИ





По одним и тем же данным задачи линейного программирования можно составить другую задачу, которую называют двойственной к ней. Можно сформулировать общие правила, которыми следует пользоваться при построении двойственных задач.

I. При построении двойственной задачи следует проверить, выполняются ли для исходной задачи такие требования:

1) во всех ограничениях свободные члены расположены в правой части равенства (неравенства), а члены с неизвестными – в левой;

2) все ограничения неравенств исходной задачи должны быть записаны так, чтобы знаки неравенств в них были направлены в одну и ту же сторону, для этого достаточно отдельные неравенства умножить на (-1);

3) общий знак неравенства системы ограничений связывается с оптимизацией формы таким образом: если max, то ; если min, то .

 

II. При построении системы ограничений двойственной задачи следует придерживаться таких правил:

1) каждому ограничению исходной задачи соответствует неизвестная в двойственной задачи, причем двойственная неизвестная, соответствующая ограничению неравенства, должна быть неотрицательной, а равенства могут иметь любой знак;

2) каждой неизвестной xj исходной задачи соответствует ограничение двойственной. Эти ограничения строят таким образом: умножают коэффициенты aij, которые стоят при xj, на соответствующие двойственные неизвестные , результаты умножения добавляем и ставим в левую часть ограничений, а в правую – коэффициент при xj в оптимизирующей форме cj;

3) во всех ограничениях двойственной задачи ставят один и то же знак неравенства, противоположный общему знаку неравенства системы ограничений исходной задачи.

 

III. Для оптимизированной форме двойственной задачи должны удовлетворяться условия:

1) форма z* двойственной задачи оптимизируется в противоположном значении (если z(max), то z*(min), и – наоборот);

2) коэффициентами при двойственных неизвестных в форме z* являются соответствующие свободные члены системы ограничений исходной задачи. Свободный член c0 формы z переносится без изменений в форму z*.

 

Пример 12. Построить двойственную задачу к следующей задачи линейного программирования:

Решение. Прежде чем построить двойственную задачу к исходной, надо заменить знак второго ограничения на (для этого умножим его на (-1)) и в первом неравенстве сгруппируем члены:

Согласно ограничениям исходной задачи возьмем двойственные неизвестные y1, y2, y3 и строим двойственную задачу:

Пример 13. Построить двойственную задачу к задаче линейного программирования с ограничениями в виде равенств.

Решение. Задача линейного программирования с ограничениями в виде равенств имеет вид:

 

поэтому двойственная к ней задача выглядит следующим образом:

 

Методику нахождения оптимального решения двойственной задачи, если исходная задача решена симплекс-методом, рассмотрим на таком примере:

(max) z0=3x1+2x2;

Двойственная задача

Решение исходной задачи симплекс-методом приведено в таблицах 1 – 3. Оптимальный план двойственной задачи находим на основании строки последней итерации (таблица 3). При этом двойственная неизвестная y1 соответствует базисной неизвестной первого ограничения x3, неизвестная y2 – второго ограничения x4. Учитывая это, получаем такой оптимальный план двойственной задачи:

.







Дата добавления: 2014-11-10; просмотров: 545. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия