Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доверительный интервал. Доверительная вероятность





Под термином «оценка» понимаются как сами значения параметров генеральной совокупности, полученные по выборке, так и правило, по которому они получены. При формировании интервальных оценок определяют границы интервалов, между которыми с той или иной вероятностью находятся истинные значения параметров.

Вероятности, признанные достаточными для того, чтобы уверенно судить о генеральных параметрах на основании выборочных характеристик, называют доверительными.

В качестве доверительных вероятностей принято выбирать значения 0, 9; 0, 95; 0, 99; 0, 999 (их еще выражают в процентах).

(1 – α) – доверительная вероятность, а α – уровень значимости
(α = 0, 1; 0, 05; 0, 01; 0, 001), задающий вероятность того, что оцениваемый генеральный параметр выходит за границы доверительного интервала.

Выбор доверительной вероятности производится исследователем, исходя из практических соображений о той ответственности, с какой делаются выводы о генеральных параметрах. Как правило, в научных исследованиях в области спорта считается достаточной доверительная вероятность 0, 95 (95 %).

Интервал, в котором с заданной доверительной вероятностью находится оцениваемый генеральный параметр, называется доверительным интервалом.

Иными словами, доверительным интервалом Jp называют случайный интервал (Q1, Q2), который накрывает неизвестную характеристику Q с доверительной вероятностью p.

 
 

 

 


Границы доверительного интервала Jp называют:

Q1 = Q* - e1 – нижней доверительной границей;

Q2 = Q* + e2 – верхней доверительной границей.

Значения e1 и e2 могут совпадать (при симметричном распределении Q*) и быть разными (при несимметричном распределении Q*). Они характеризуют точность, а вероятность pнадежность определения Q. Между надежностью и точностью существует обратная зависимость: чем выше надежность, тем ниже точность определения Q и наоборот.

С увеличением числа измерений при заданном p повышается точность определения Q (уменьшаются e1 и e2).

Для точного расчета границ доверительного интервала необходимо знать закон распределения выборочной характеристики Q*.

 







Дата добавления: 2014-11-10; просмотров: 1100. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия