Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доверительный интервал. Доверительная вероятность





Под термином «оценка» понимаются как сами значения параметров генеральной совокупности, полученные по выборке, так и правило, по которому они получены. При формировании интервальных оценок определяют границы интервалов, между которыми с той или иной вероятностью находятся истинные значения параметров.

Вероятности, признанные достаточными для того, чтобы уверенно судить о генеральных параметрах на основании выборочных характеристик, называют доверительными.

В качестве доверительных вероятностей принято выбирать значения 0, 9; 0, 95; 0, 99; 0, 999 (их еще выражают в процентах).

(1 – α) – доверительная вероятность, а α – уровень значимости
(α = 0, 1; 0, 05; 0, 01; 0, 001), задающий вероятность того, что оцениваемый генеральный параметр выходит за границы доверительного интервала.

Выбор доверительной вероятности производится исследователем, исходя из практических соображений о той ответственности, с какой делаются выводы о генеральных параметрах. Как правило, в научных исследованиях в области спорта считается достаточной доверительная вероятность 0, 95 (95 %).

Интервал, в котором с заданной доверительной вероятностью находится оцениваемый генеральный параметр, называется доверительным интервалом.

Иными словами, доверительным интервалом Jp называют случайный интервал (Q1, Q2), который накрывает неизвестную характеристику Q с доверительной вероятностью p.

 
 

 

 


Границы доверительного интервала Jp называют:

Q1 = Q* - e1 – нижней доверительной границей;

Q2 = Q* + e2 – верхней доверительной границей.

Значения e1 и e2 могут совпадать (при симметричном распределении Q*) и быть разными (при несимметричном распределении Q*). Они характеризуют точность, а вероятность pнадежность определения Q. Между надежностью и точностью существует обратная зависимость: чем выше надежность, тем ниже точность определения Q и наоборот.

С увеличением числа измерений при заданном p повышается точность определения Q (уменьшаются e1 и e2).

Для точного расчета границ доверительного интервала необходимо знать закон распределения выборочной характеристики Q*.

 







Дата добавления: 2014-11-10; просмотров: 1100. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия