Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок работы на V этапе





1. Проверить на нормальность распределения малую (n < 30) выборку, составленную из разностей парных значений результатов измерений исходного показателя скоростных качеств у «спортсменов» (эти результаты обозначены индексом В) и показателя, достигнутого после двухмесячных тренировок (эти результаты обозначены индексом Г).

2. Выбрать критерий и оценить эффективность метода тренировки, используемого для ускоренного развития скоростных качеств у «спортсменов».

3. Рассчитать и графически построить на числовой прямой доверительные интервалы генеральных средних арифметических выборок В и Г.

Отчет
о работе на V этапе игры
(образец)

Тема: Оценка эффективности методики тренировки.

Цели:

1. Ознакомиться с особенностями нормального закона распределения результатов тестирования.

2. Приобрести навыки по проверке выборочного распределения на нормальность.

3. Приобрести навыки оценки эффективности методики тренировки.

4. Научиться рассчитывать и строить доверительные интервалы для генеральных средних арифметических малых выборок.

Вопросы:

1. Сущность метода оценки эффективности методики тренировки.

2. Нормальный закон распределения. Сущность, значение.

3. Основные свойства кривой нормального распределения.

4. Правило трех сигм и его практическое применение.

5. Оценка нормальности распределения малой выборки.

6. Какие критерии и в каких случаях используются для сравнения средних попарно зависимых выборок?

7. Что характеризует доверительный интервал? Методика его определения.

 

Вариант 1: критерий параметрический

Примечание: В качестве примера возьмем приведенные в таблице 5.2 результаты измерения показателя скоростных качеств у спортсменов до начала тренировок (они обозначены индексом В, были получены в результате измерений на I этапе деловой игры) и после двух месяцев тренировок (они обозначены индексом Г).

 

От выборок В и Г перейдем к выборке, составленной из разностей парных значений di = NiГNiВ и определим квадраты этих разностей. Данные занесем в расчетную таблицу 5.2.

Таблица 5.2 – Расчет квадратов парных разностей значений di2

№ п/п NiВ, уд NiГ, уд di = NiГNiВ, уд di2, уд2
         
         
         
         
         
      -2  
         
         
         
         
      S = 50 S = 484

 

Пользуясь таблицей 5.2, найдем среднее арифметическое парных разностей:

уд.

Далее рассчитаем сумму квадратов отклонений di от по формуле:

уд.2

Определим дисперсию для выборки di:

уд.2

Далее необходимо выборку, составленную из разностей парных значений di, проверить на нормальность распределения.

Выдвигаем гипотезы:

– нулевую – H0: о том, что генеральная совокупность парных разностей di имеет нормальное распределение;

– конкурирующую – H1: о том, что распределение генеральной совокупности парных разностей di отлично от нормального.

Проверку проводим на уровне значимости a = 0, 05.

Для этого составим расчетную таблицу 5.3.

Таблица 5.3 – Данные расчета критерия Шапиро и Уилка Wнабл для выборки, составленной из разностей парных значений di

№ п/п di, уд k dn - k + 1-dk=Dk ank Dk× ank
  -2   17 – (–2) = 19 0, 5739 10, 9041
      7 – 0 = 7 0, 3291 2, 3037
      6 – 3 = 3 0, 2141 0, 6423
      6 – 3 = 3 0, 1224 0, 3672
      6 – 4 = 2 0, 0399 0, 0798
           
           
           
           
           

 

Порядок заполнения таблицы 5.3:

1. В первый столбец записываем номера по порядку.

2. Во второй – разности парных значений di в неубывающем порядке.

3. В третий – номера по порядку k парных разностей. Так как в нашем случае n = 10, то k изменяется от 1 до n /2 = 5.

4. В четвертый – разности Dk, которые находим таким образом:

– из самого большого значения d10 вычтем самое малое d1 и полученное значение запишем в строке для k = 1,

– из d9 вычтем d2 и полученное значение запишем в строке для k = 2 и т.д.

5. В пятый – записываем значения коэффициентов ank, взятые из таблицы, используемой в статистике для расчета критерия Шапиро и Уилка (W) проверки нормальности распределения (Приложение 2) для n = 10.

6. В шестой – произведение Dk × ank и находим сумму этих произведений:

;

.

Наблюдаемое значение критерия Wнабл находим по формуле:

.

Проверим правильность выполнения расчетов критерия Шапиро и Уилка (Wнабл) его расчетом на компьютере по программе «Статистика».

Расчет критерия Шапиро и Уилка (Wнабл) на компьютере позволил установить, что:

.

Далее по таблице критических значений критерия Шапиро и Уилка (Приложение 3) ищем Wкрит для n = 10. Находим, что Wкрит = 0, 842. Сравним величины Wкрит и Wнабл.

Делаем вывод: так как Wнабл (0, 874) > Wкрит (0, 842), должна быть принята нулевая гипотеза о нормальном распределении генеральной совокупности di. Следовательно, для оценки эффективности применявшейся методики развития скоростных качеств следует использовать параметрический t -критерий Стьюдента.

 







Дата добавления: 2014-11-10; просмотров: 617. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия