Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок роботи. 1. Перевірити необхідні умови випадковості, шляхом перевірки виконання співвідношень





1. Перевірити необхідні умови випадковості, шляхом перевірки виконання співвідношень

де – середня похибка результатів вимірювань;

– середня квадратична похибка результатів вимірювань;

– ймовірна похибка результатів вимірювань.

При цьому середню і середню квадратичну похибки, відповідно, обчислюють за формулами

де – істинна похибка результату вимірювання;

– кількість вимірювань.

Співвідношення (1) і (2) є тільки необхідними, але не достатніми умовами випадковості. Якщо вони не виконуються, подальші дослідження можна не проводити, тобто наведений ряд похибок не є випадковим.

3. Якщо співвідношення (1) і (2) виконуються, необхідно побудувати інтервальний статистичний ряд розподілу похибок вимірювань та відповідний йому дискретний статистичний ряд.

4. За даними побудованих рядів обчислити оцінки параметрів нормального розподілу, а саме середнє вибіркове і вибіркову дисперсію.

5. Знайти всі значення функції густини нормального розподілу за даними дискретного статистичного ряду і на їх основі побудувати криву розподілу та гістограму відносних частот на одному графіку.

6. Із використанням критерію Пірсона перевірити справедливість сформульованої нульової гіпотези , якщо альтернативною гіпотезою буде логічне заперечення нульової гіпотези, тобто досліджуваний ряд похибок вимірювань не підлягає нормальному закону розподілу.

Приклад. Задано ряд істинних похибок результатів вимірювань деякої величини -7, -6, -20, -2, 16, -7, -9, 2, 4, -7, -9, 2, 4, -7, -5, -3, 10, 5, -3, 3, 4, -8, 12, 6, -9, 5, 3, -2, -8, 9, 7, -4, 10, -16, 15, -8, 6, -7, -3, 4, -5, 9, 14, 11, -6, 2, -13, -8, 11, 16, -14, -7, 1. Потрібно визначити, чи є наведені похибки випадковими, чи носять інший характер.

Спочатку обчислюємо середню квадратичну похибку за формулою (4)

Знаходимо середню похибку із виразу (3)

Будуємо абсолютний варіаційний ряд наведених похибок, тобто послідовність даних похибок, розміщених в порядку зростання за їх абсолютною величиною: 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 16, 20.

З побудованого ряду отримуємо ймовірну похибку, тобто таке значення абсолютного варіаційного ряду, яке ділить його на дві рівні за обсягом частини

Перевіряємо виконання необхідних умов випадковості (1) і (2) тобто

Дані умови є необхідними і, як видно з результатів обчислень, вони не виконуються. Тобто наведений ряд похибок не є випадковим. Але на даному прикладі покажемо як проводити подальші дослідження на випадковість, тобто перевірку достатніх умов випадковості.

Обчислюємо граничну похибку

яку не перевищують похибки з наведеного ряду, та середнє арифметичне похибок

яке для випадкових похибок повинно дорівнювати нулю.

Знаходимо кількість та довжину h інтервалів за формулою Стерджеса

Будуємо інтервальний статистичний ряд розподілу похибок (табл. 1).

Таблиця 1 – Інтервальний статистичний ряд розподілу похибок

i; Δ i+1) [-20; -14.9) [-14.9; -9.8) [-9.8; -4.7) [-4.7; 0.4) [0.4; 5.5) [5.5; 10.6) [10.6; 16]
-17.5 -12.4 -7.3 -2.2 3.0 8.1 13.3
             
0.04 0.06 0.30 0.11 0.22 0.13 0.15

В табл. 1 – частота і -го інтервалу (кількість похибок, які потрапляють на даний інтервал); – середина і -го інтервалу; – відносна частота і -го інтервалу.

За даними інтервального статистичного ряду розподілу похибок обчислюємо середнє вибіркове , вибіркову дисперсію та вибіркове середнє квадратичне відхилення

 

Знаходимо нормуючі аргументи

функції густини нормального розподілу та за таблицею (додаток В) знаходимо її значення. Результати заносимо до табл. 2.

Таблиця 2 – Нормуючі аргументи та значення функції густини розподілу

-17.5 -12.4 -7.3 -2.2 3.0 8.1 13.3
-2.00 -1.41 -0.82 -0.23 0.37 0.95 1.56
0.0540 0.1476 0.2850 0.3885 0.3726 0.2541 0.1182

Будуємо на одному графіку гістограму відносних частот та криву функції густини нормального розподілу (рис. 1).

Рис. 3 – Графік функції та гістограма відносних частот

Перевіряємо нульову гіпотезу , яка твердить, що наведений емпіричний розподіл є нормальним. Альтернативною гіпотезою буде заперечення нульової гіпотези , тобто даний емпіричний розподіл не є нормальним.

Для перевірки нульової гіпотези використовуємо критерій Пірсона

де – ймовірність потрапляння значення істинної похибки на і- й інтервал;

– функція Лапласа (додаток Г); .

Спочатку обчислюємо значення , ймовірності та .

p1 = Ф0(z2) – Ф0(z1) = – Ф0(1.701) + Ф0(2.290) = –0.4554 + 0.4890 = 0.0336;

p2 = Ф0(z3) – Ф0(z2) = – Ф0(1.112) + Ф0(1.701) = –0.3665 + 0.4554 = 0.0889;

p3 = Ф0(z4) – Ф0(z3) = – Ф0(0.523) + Ф0(1.112) = –0.1985 + 0.3665 = 0.1680;

p4 = Ф0(z5) – Ф0(z4) = – Ф0(0.027) + Ф0(0.523) = –0.0080 + 0.1985 = 0.1905;

p5 = Ф0(z6) – Ф0(z5) = Ф0(0.655) + Ф0(0.027) = 0.2422 + 0.0120 = 0.2542;

p6 = Ф0(z7) – Ф0(z6) = Ф0(1.244) – Ф0(0.655) = 0.3925 – 0.2422 = 0.1503;

p7 = Ф0(z8) – Ф0(z7) = Ф0(1.867) – Ф0(1.244) = 0.4693 – 0.3925 = 0.0768;

np 1 = 54 ∙ 0.0336 = 2; np 2 = 54 ∙ 0.0889 = 5; np 3 = 54 ∙ 0.1680 = 9;

np 4 = 54 ∙ 0.1905 = 10; np 5 = 54 ∙ 0.2542 = 14; np 6 = 54 ∙ 0.1503 = 8;

np 7 = 54 ∙ 0.0768 = 4;

Знаходимо емпіричне значення критерію за формулою (5)

Задавши рівень значущості та визначивши кількість ступенів довільності , за таблицею критичних точок розподілу (додаток Д) знаходимо точку правобічної критичної області .

Оскільки , то нульова гіпотеза про нормальний розподіл похибок результатів вимірювань відхиляється і на цьому завершується перевірка достатніх умов випадковості.







Дата добавления: 2014-11-10; просмотров: 807. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия