Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок роботи. 1. Записати умову задачі в скороченому вигляді





1. Записати умову задачі в скороченому вигляді.

2. Накреслити пояснювальну схему до розв’язання задачі.

3. Встановити функціональну залежність між шуканою величиною та безпосередньо виміряними величинами.

4. Записати функцію (6) в явному вигляді.

5. Знайти часткові похідні цієї функції за всіма незалежними змінними.

6. Підставити часткові похідні й середні квадратичні похибки в формулу (7).

7. Виконати необхідні математичні перетворення й отримати кінцевий результат.

Приклад. Обчислити прирости координат , та їх середні квадратичні похибки , , якщо довжина лінії виміряна з середньою квадратичною похибкою = 0.1 м, і становить = 120.0 м, а її дирекційний кут = 60˚ 00' виміряний з середньою квадратичною похибкою = 1.5' (рис.4)

Рис. 4 – Схема, що пояснює зміст задачі

Виразимо функціонально прирости координат та через лінію та її дирекцій ний кут

;

.

Обчислюємо значення приростів координат та

Користуючись таблицею похідних (додаток Е), знайдемо часткові похідні функцій та за змінними і .

Обчислимо значення часткових похідних , , і .

Підставляємо значення часткових похідних та середніх квадратичних похибок у вираз (2)

де = 3438' – кількість мінут у радіані.

Ділення на в даному прикладі здійснюється тому, що середні квадратичні похибки , виміряних приростів , виражаються в лінійних одиницях.

Отже прирости координат дорівнюють







Дата добавления: 2014-11-10; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия