Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок роботи. 1. Записати умову задачі в скороченому вигляді





1. Записати умову задачі в скороченому вигляді.

2. Накреслити пояснювальну схему до розв’язання задачі.

3. Встановити функціональну залежність між шуканою величиною та безпосередньо виміряними величинами.

4. Записати функцію (6) в явному вигляді.

5. Знайти часткові похідні цієї функції за всіма незалежними змінними.

6. Підставити часткові похідні й середні квадратичні похибки в формулу (7).

7. Виконати необхідні математичні перетворення й отримати кінцевий результат.

Приклад. Обчислити прирости координат , та їх середні квадратичні похибки , , якщо довжина лінії виміряна з середньою квадратичною похибкою = 0.1 м, і становить = 120.0 м, а її дирекційний кут = 60˚ 00' виміряний з середньою квадратичною похибкою = 1.5' (рис.4)

Рис. 4 – Схема, що пояснює зміст задачі

Виразимо функціонально прирости координат та через лінію та її дирекцій ний кут

;

.

Обчислюємо значення приростів координат та

Користуючись таблицею похідних (додаток Е), знайдемо часткові похідні функцій та за змінними і .

Обчислимо значення часткових похідних , , і .

Підставляємо значення часткових похідних та середніх квадратичних похибок у вираз (2)

де = 3438' – кількість мінут у радіані.

Ділення на в даному прикладі здійснюється тому, що середні квадратичні похибки , виміряних приростів , виражаються в лінійних одиницях.

Отже прирости координат дорівнюють







Дата добавления: 2014-11-10; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия