Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Порядок роботи. 1. Записати умову задачі в скороченому вигляді





1. Записати умову задачі в скороченому вигляді.

2. Накреслити пояснювальну схему до розв’язання задачі.

3. Встановити функціональну залежність між шуканою величиною та безпосередньо виміряними величинами.

4. Записати функцію (6) в явному вигляді.

5. Знайти часткові похідні цієї функції за всіма незалежними змінними.

6. Підставити часткові похідні й середні квадратичні похибки в формулу (7).

7. Виконати необхідні математичні перетворення й отримати кінцевий результат.

Приклад. Обчислити прирости координат , та їх середні квадратичні похибки , , якщо довжина лінії виміряна з середньою квадратичною похибкою = 0.1 м, і становить = 120.0 м, а її дирекційний кут = 60˚ 00' виміряний з середньою квадратичною похибкою = 1.5' (рис.4)

Рис. 4 – Схема, що пояснює зміст задачі

Виразимо функціонально прирости координат та через лінію та її дирекцій ний кут

;

.

Обчислюємо значення приростів координат та

Користуючись таблицею похідних (додаток Е), знайдемо часткові похідні функцій та за змінними і .

Обчислимо значення часткових похідних , , і .

Підставляємо значення часткових похідних та середніх квадратичних похибок у вираз (2)

де = 3438' – кількість мінут у радіані.

Ділення на в даному прикладі здійснюється тому, що середні квадратичні похибки , виміряних приростів , виражаються в лінійних одиницях.

Отже прирости координат дорівнюють







Дата добавления: 2014-11-10; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия