Термопреобразователи сопротивления
Термопреобразователи сопротивления являются широко распространенными датчиками температуры, используемыми в диапазоне от -260 до 1100°С. Принцип действия их основан на способности материалов (металлов и полупроводников) изменять свое электрическое сопротивление в зависимости от температуры. Для изготовления термопреобразователи сопротивления используются в соответствии с ГОСТ 6651-94 чистые медь, платина и никель. Эти металлы имеют стабильные и воспроизводимые характеристики преобразования (градуировочные характеристики). Номинальные статические характеристики преобразования датчиков рассчитываются по формуле
(2.3)
где Rt – сопротивление термопреобразователя при температуре t, Ом; Rо – сопротивление при температуре 0 0С, Ом; Wt – отношение сопротивлений при температурах t и 0 0С. Значения Wt приведены в таблицах ГОСТ 6651-94. Кроме того их можно рассчитать по приведенным в ГОСТе интерполяционным уравнениям. Термопреобразователи сопротивления выпускаются с классами допуска А, В и С. Под классом допуска понимается обобщенная характеристика термопреобразователя, определяющая допускаемые отклонения сопротивления Rо, значения W100 (отношения сопротивлений при температурах 100 0С и 0 0С) и погрешности измерения температуры Δ t. Класс допуска определяется чистотой материала (платины, меди, никеля) качеством изготовления термопреобразователя. В таблице 2.3 приведены предусмотренные ГОСТом номинальные значения сопротивлений датчиков R0, отношений сопротивлений W100 и условные обозначения номинальных статических характеристик, а также пределы измерения и классы допуска.
Таблица 2.3 - Термопреобразователи сопротивления
У медных термопреобразователей с W100=1, 4260 с ростом температуры сопротивление увеличивается по линейной зависимости. Для других типов преобразователей сопротивление имеет сложную нелинейную зависимость от температуры. Интерполяционные уравнения для вычисления Wt различных типов термопреобразователей приведены в таблице 2.4.
Таблица 2.4 - Интерполяционные уравнения для вычисления Wt
Устройство проволочных термопреобразователей сопротивления представлено на рисунке 2.2. Чувствительный элемент датчика представляет проволоку 1 диаметром 0, 07 или 0, 1 мм, намотанную на каркас 2 из стекла, кварца, керамики, слюды или пластмассы. От чувствительного элемента идут выводы 3 к зажимам 4 головки 5. К этим зажимам присоединяются провода, идущие к измерительному прибору. Чувствительный элемент помещен в защитную оболочку 6.
Рисунок 2.2 – Конструкция проволочного преобразователя
Выводы изолированы керамическими бусами 7. Вся конструкция помещена в защитный чехол 8. Для установки на объекте контроля датчик снабжен штуцером 9. В некоторых датчиках чувствительные элементы выполняются бескаркасными, в виде компактно уложенного мотка проволоки. Относительно новой технологией изготовления датчиков является пленочная технология, при которой чувствительный элемент выполняется в виде тончайшей пленки металла (платины). Датчик имеет игольчатую конструкцию с диаметром чехла до 2 мм, удобную для измерения температуры внутри продукта. Кроме металлов для изготовления термопреобразователей сопротивления применяются также полупроводниковые материалы: германий, окислы меди, марганца, кобальта, магния, титана и их смеси. Большинство полупроводниковых материалов обладает большим отрицательным температурным коэффициентом сопротивления (сопротивление резко уменьшается с ростом температуры) и очень большим удельным сопротивлением. Это дозволяет изготовлять очень малые по размерам датчики, обладающие высокой чувствительностью. Зависимость сопротивления полупроводникового термопреобразователя (терморезистора) от температуры может быть описана выражением: (2.2) где Т - измеряемая температура, К; Т0 - начальная температура, К (Т0 = 293 К); В - коэффициент, зависящий от материала полупроводника, К; RT и R0 – сопротивления датчика при температурах Т и Т0, 0м.
Значительным недостатком терморезисторов является то, что они не отвечают требованию воспроизводимости. Технология получения полупроводниковых материалов не позволяет изготовлять датчики с идентичными параметрами, поэтому все они имеют индивидуальные характеристики преобразования, а разброс этих характеристик выражается различием сопротивления R0 отдельных датчиков более чем в 1000 раз. Необходимость индивидуальной градуировки существенно ограничивает возможности широкого использования терморезисторов для измерения температуры. Основной областью применения терморезисторов являются системы температурной сигнализации, а для измерения температуры используются в основном проволочные термопреобразователи сопротивления (медные и платиновые). Измерительный комплект с техническим термометром сопротивления состоит из самого термометра, соединительных проводов, источника питания и электроизмерительного прибора (вторичного прибора), фиксирующего изменение сопротивления. В качестве вторичного прибора применяют цифровые измерительные приборы, например, серии ТРМ, а также аналоговые электромеханические приборы: мосты, логометры, приборы серии «Диск».
|