Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретический материал. Какие основные виды опор используются для балок?





Какие основные виды опор используются для балок?

Чаще всего для балок используются следующие виды опор:

– жесткое защемление (жесткая заделка),

– шарнирно-неподвижная опора,

– шарнирно-подвижная опора.

Какие реактивные усилия возникают в опорах балки от действия плоской внешней нагрузки?

а) балка с жестким защемлением:

В жестком защемлении (А) балки под действием произвольно направленной внешней нагрузки (силы F1 и F2) в плоской системе координат возникают три реактивных усилия: две проекции реактивной силы RAx и RAy и реактивный момент MA:

Но если внешние силы будут направлены строго вертикально (параллельно друг другу), то горизонтальная проекция реактивной силы RAx будет тождественно равна нулю. Таким образом, при вертикальной нагрузке в жестком защемлении балки возникает два реактивных усилия – вертикальная реактивная сила RA и реактивный момент MA:

 

б) балка на двух шарнирных опорах:

Рассмотрим балку на двух шарнирных опорах, одна из которых шарнирно-неподвижная (опора А), а другая – шарнирно-подвижная (опора В). Внешняя нагрузка – плоская, произвольно направленная. Наличие шарнира в таких опорах снимает поворотное усилие, поэтому в них реактивных моментов не возникает. В шарнирно-неподвижной опоре (А) в силу её неподвижности возникает две проекции реактивной силы по направлению координатных осей RAx и RAy. В шарнирно-подвижной опоре (В) возможность её смещения в горизонтальном направлении компенсирует действие горизонтальных составляющих внешних сил и поэтому возникает единственная реактивная сила в вертикальном направлении RB (перпендикулярно направлению смещения опоры):

Если же внешние силы будут направлены строго вертикально, то в шарнирно-неподвижной опоре (А) горизонтальная проекция реактивной силы RAx будет тождественно равна нулю. То есть, при вертикальной нагрузке и в шарнирно-неподвижной и в шарнирно-подвижной опорах возникают только по одной вертикальной реактивной силе – RA и RB:

Какие конструкции называются статически определимыми?

Конструкции, у которых количество неизвестных реактивных усилий равно необходимому и достаточному количеству уравнений статического равновесия, называются статически определимыми. А раз количество неизвестных соответствует количеству уравнений, в которые эти неизвестные входят, то все реактивные усилия однозначно определяются из уравнений статического равновесия. Отсюда и название таких конструкций – статически определимые.

К статически определимым балкам относятся балки с жестким защемлением и балки на двух шарнирных опорах, одна из которых шарнирно-неподвижная, а другая – шарнирно-подвижная.

Что такое условие равновесия конструкции?

Все нагруженные конструкции должны находиться в равновесии. Условием равновесия статически нагруженных плоских конструкций является выполнение для них трех статических уравнений равновесия.

Три статических уравнения равновесия для конструкции, находящейся под действием произвольной плоской системы сил, могут быть записаны в одной из трех форм:

1) , , , (1)

где: – моментное уравнение равновесия, записанное относительно произвольной точки А, означающее, что сумма моментов, возникающих относительно точки А от действия всех активных (внешних) и реактивных сил конструкции должна равняться нулю; и – силовые уравнения равновесия, означающие, что сумма проекций всех активных и реактивных сил конструкции на координатные оси X и Y, соответственно, должна равняться нулю. Рекомендация: эту форму уравнений равновесия рекомендуется выбирать для определения трех реакций опор балки с жестким защемлением, причем в качестве точки А рационально выбирать точку защемления балки:

 

2) , , , (2)

где: и – моментные уравнения равновесия, записанные относительно двух произвольных точек А и В, а – силовое уравнение равновесия в проекции на произвольную ось U, не перпендикулярную прямой, соединяющей точки А и В. Рекомендация: эту форму уравнений равновесия рекомендуется выбирать для определения реактивных усилий балки на двух шарнирных опорах, причем в качестве точек А и В рационально выбирать опорные точки балки, а силовое уравнение равновесия записывать в проекции на горизонтальную ось Х:

 

3) , , , (3)

где: , , – моментные уравнения равновесия, записанные относительно трех произвольных точек А, В и С, не лежащих на одной прямой.

 

Если же силы, действующие на конструкцию, образуют параллельную систему сил (например, все силы направлены строго вертикально), то количество уравнений равновесия сокращается до двух, и они могут быть записаны в одной из двух форм:

1) , , (1')

здесь смысл уравнений тот же, причем ось Y, на которую проектируются все силы, должна быть параллельна силам. Рекомендация: эту форму уравнений равновесия рекомендуется выбирать для определения двух реакций опор балки с жестким защемлением и вертикальной нагрузкой, причем в качестве точки А рационально выбирать точку защемления балки:

 

2) , , (2')

здесь два моментных уравнения равновесия записываются относительно двух произвольных точек А и В, однако прямая АВ не должна быть параллельна силам. Рекомендация: эту форму уравнений равновесия рекомендуется выбирать для определения двух реакций опор балки с шарнирными опорами и вертикальной нагрузкой, причем в качестве точек А и В рационально выбирать опорные точки балки:

 

Как составить моментное уравнение равновесия относительно данной точки?

Наибольшее затруднение у студентов вызывает составление моментных уравнений равновесия. Для этого нужно уметь определять значения моментов, возникающих в данной точке (относительно которой записывается уравнение равновесия) от действия каждого усилия (активного и реактивного), приложенного к конструкции. Основные виды усилий, применяемых в расчетных схемах:

– сосредоточенный момент М,

– сосредоточенная сила F,

– распределенная сила интенсивностью q, приложенная на расстоянии а.

Повторим правила определения момента в точке от действия М, F и q. Момент – это поворотное усилие, которое характеризуется значением и направлением вращения.

1) Момент, возникающий в точке О плоской системы от действия сосредоточенного момента М, приложенного в точке А данной системы, равен значению данного момента М и сохраняет его направление вращения:

 

 

(по часовой стрелке).

Таким образом, действие сосредоточенного момента передается в любую точку плоскости без изменения.

2) Момент, возникающий в точке О плоской системы от действия сосредоточенной силы F, приложенной в точке А данной системы, равен произведению силы на её плечо (с учетом направления вращения).

(по часовой стрелке)

Плечом силы F относительно точки О () называется кратчайшее расстояние от точки О до линии действия силы.

3) Момент, возникающий в точке О плоской системы от действия распределенной нагрузки интенсивностью q, приложенной на расстоянии а, равен произведению равнодействующей распределенной нагрузки на её плечо (с учетом направления вращения).

(по часовой стрелке)

Равнодействующая распределенной нагрузки Q – это сосредоточенная сила, приложенная в центре тяжести распределенной нагрузки и равная произведению интенсивности q на расстояние действия а: . Плечом равнодействующей Q относительно точки О () называется кратчайшее расстояние от точки О до линии действия равнодействующей.

Таким образом, чтобы составить моментное уравнение равновесия для балки относительно выбранной точки нужно определить моменты от всех действующих на балку усилий (активных и реактивных) относительно данной точки, просуммировать их с учетом направления вращения и приравнять полученную сумму к нулю.

Алгоритм определения реакций опор статически определимых балок

1. Обозначить на схеме балки опорные точки буквами и изобразить в них реактивные усилия соответственно типам опор и виду внешней нагрузки.

2. Выбрать рациональную форму уравнений равновесия согласно приведенным выше рекомендациям.

3. По выбранной форме составить уравнения равновесия балки с учетом действия всех активных (заданных) и реактивных усилий. Внимание: количество уравнений должно соответствовать количеству реактивных усилий !

4. Решить полученную систему уравнений равновесия относительно реактивных усилий. Внимание: если знак найденного реактивного усилия получился отрицательным, то его направление нужно изменить на противоположное !

 







Дата добавления: 2014-11-10; просмотров: 1368. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия