Функции гликозамингликанов и протеогликанов
Связывание гликозоаминогликанов с другими внеклеточными макромолекулами вносит значительный вклад в структурную организацию соединительнотканного матрикса. Гликозоаминогликаны могут взаимодействовать с внеклеточными макромолекулами, белками плазмы, компонентами клеточной поверхности и внутриклеточными макромолекулами. Связывание гликозаминогликанов носит обычно электростатический характер, обусловленный их выраженной полианионной природой, однако некоторые реакции связывания являются более специфичными. В целом гликозаминогликаны, содержащие IdUA, такие как дерматансульфат и гепарансульфат, связывают белки с большим сродством, чем гликозаминогликаны, содержащие в качестве единственной уроновой кислоты GlcUA. Взаимодействие с внеклеточными макромолекулами. Все гликозамино-гликаны, за исключением тех, в которых отсутствуют сульфатные (гиалуронат) или карбоксильные группы (кератансульфаты), при нейтральных значениях рН электростатически связываются с коллагеном. Присутствие IdUA способствует более прочному связыванию, и протеогликаны взаимодействуют с коллагеном сильнее, чем соответствующие гликозаминогликаны. С каждым коллагеновым мономером связывается от 2 до 5 полисахаридных цепей. Все растворимые коллагены (I, II и III типов) связывают хондроитинсульфатные протеогликаны. Хондроитинсульфат и гепарансульфат специфически связываются с эластином. Как отмечалось выше, хондроитинсульфатные и кератансульфатные цепи в составе соответствующих протеогликанов при посредстве связывающих белков образуют агрегаты с гиалуроновой кислотой. С одной молекулой гиалуроната может связываться до 100 протеогликановых молекул. Взаимодействие с белками плазмы крови. В состав поверхности стенки артериальных сосудов входят протеогликаны, содержащие гиалуронат, хондроитинсульфат, дерматансульфат и гепарансульфат. Из них с липопротеинами плазмы крови взаимодействует дерматансульфат. Кроме того, дерматансульфат, по-видимому, является главным гликозаминогликаном, синтезируемым гладкомышечными клетками артерий. Поскольку именно эти клетки пролиферируют при атеросклеротических поражениях артерий, дерматансульфат может играть значительную роль в образовании атеросклеротических бляшек. Хотя гепарин синтезируется и запасается в тучных клетках, он всегда тесно связан с кровеносными сосудами. В силу своего высокого отрицательного заряда (обусловленного остатками IdUA и сульфата) гепарин интенсивно взаимодействует с некоторыми компонентами плазмы. Он специфически связывает факторы свертывания крови IX и XI. Более важной для антикоагулянтной активности гепарина является его способность взаимодействовать с a2-гликопротеином плазмы, называемым антитромбином III. Стехиометрическое связывание с гепарином (1: 1) значительно усиливает инактивирующее действие антитромбина III на сериновые протеазы, в частности на тромбин. Гепарансульфат, сходный с гепарином по структуре, также обладает способностью ускорять действие антитромбина III, но по эффекту значительно уступает гепарину. Гепарин может специфически связываться с липопротеинлипазой, присутствующей в стенках капилляров, и вызывать высвобождение этого фермента в кровоток (антилипидемическое действие гепарина). Сходным образом связывается с гепарином и поступает в кровоток печеночная липаза, но это связывание происходит с меньшим сродством, чем в случае липопротеинлипазы. Гликозаминогликаны и молекулы клеточной поверхности. Гепарин обладает способностью связываться с многими типами клеток, включая тромбоциты, клетки эндотелия артерий и гепатоциты. Хондроитинсульфат, дерматансульфат и гепарансульфат связываются с разными участками клеточной поверхности, например фибробластов. Именно в этих участках гликозаминогликаны и протеогликаны подвергаются деградации. Гиалуронат, по-видимому, участвует в процессах слипания клеток друг с другом, что играет столь важную роль в росте и развитии многоклеточных организмов. Некоторые протеогликаны, вероятно, служат рецепторами и переносчиками макромолекул, в том числе липопротеинов, липаз и антитромбина. Протеогликаны могут принимать участие в регуляции роста клеток, в межклеточных взаимодействиях и защите рецепторов клеточной поверхности. Гликозаминогликаны и внутриклеточные макромолекулы. Протеогликаны и их гликозаминогликановые компоненты кроме взаимодействия с ферментами, участвующими в их биосинтезе и деградации, оказывают влияние на синтез белка и внутриядерные функции. В частности, гепарин может действовать на структуру хроматина и активировать ДНК-полимеразу in vitro. В какой степени эти эффекты являются физиологическими, неясно. Гликозаминогликаны присутствуют в значительных количествах в ядрах различных типов клеток. Хондроитинсульфаты, дерматансульфаты и гепарин могут активировать или ингибировать кислые гидролазы лизосом. Эти ферменты способны формировать природные комплексы с гликозаминогликанами с образованием защищенных или неактивных форм. Многочисленные гранулы, служащие для запасания или секреции продуктов, такие, как базофильные гранулы тучных клеток, содержат сульфированные гликозаминогликаны. Гликозаминогликан-пептидные комплексы, присутствующие в этих гранулах, могут играть роль в высвобождении биогенных аминов. Установление гликопротеиновой природы овальбумина
|