И классификация хроматографических методов
Хроматографический метод анализа впервые был применен русским ботаником М. С. Цветом в 1903 г. для разделения растительных пигментов. Разделение пигментов Цвет проводил в стеклянной колонке (трубке), наполненной сухим твердым адсорбентом (СаС03). Сначала растительный материал обрабатывали органическим растворителем для экстракции пигментов. Полученный экстракт вводили в колонку. Компоненты экстракта перемещались по колонке с различной скоростью, образуя отдельные окрашенные кольца. При последующем промывании (элюировании) колонки растворителем вещества удалось полностью разделить. Для этого влажный адсорбент целиком извлекали из колонки, разрезали на отдельные столбики, из которых экстрагировали вещество, упаривали и исследовали остаток. Современные автоматизированные хроматографические методы разделения имеют очень большие возможности и считаются классическими методами разделения органических и неорганических веществ. Эти методы позволяют разделять органические соединения со сходной структурой и неорганические соединения с близкими химическими свойствами. Хроматографические методы широко применяют в различных отраслях науки и техники, в том числе в биохимии и молекулярной биологии. Хроматографические методы используются для решения следующих задач: • разделение сложных смесей неорганических и органических веществ, • выделение индивидуальных веществ (белков, углеводов, витаминов, ферментов, липидов, аминокислот, органических кислот, антибиотиков и др.) из сложных смесей, • очистка индивидуальных веществ от примесей и смолы, • концентрирование веществ из сильно разбавленных растворов, и др. Хроматография основана на распределении компонентов смесей между двумя несмешивающимися фазами - неподвижной и подвижной. В качестве неподвижной фазы (носителя) используют твердое вещество или жидкость, нанесенную на твердый инертный носитель. Подвижной фазой служит газ или жидкость, которые содержат смесь разделяемых веществ. В зависимости от природы содержащей вещество фазы различают газовую (ГХ) и жидкостную (ЖХ) хроматографию. Из-за различия природы носителя число видов хроматографии увеличивается до четырех: газотвердофазная (ГТХ), газо-жидкостная (ГЖХ), жидкостно-твердофазная (ЖТХ) и жидкость-жидкостная (ЖЖХ); другое название ЖТХ - препаративная колоночная хроматография. Хроматографические методы разделения основаны на том, что отдельные компоненты смеси перемещаются по колонке с различной скоростью и достигают выхода через разные промежутки времени. Растворитель (или газ), проходящий через колонку, называют элюен- том, процесс перемещения вещества вместе с элюентом - элюированием. Разработаны методы обнаружения и количественного определения разделяемых соединений, которые не обязательно должны быть окрашены. В современной колоночной хроматографии твердую фазу, как правило, не извлекают из колонки, а элюирование проводят до тех пор, пока отдельные вещества не выйдут одно за другим из колонки. Каждый компонент регистрируют непосредственно на выходе из колонки с помощью разнообразных детекторов (фотометрических, потенциометрических, рефрактометрических и др.) или же собирают фракции компонентов смеси коллектором, а затем определяют количество вещества, выбирая метод, пригодный для этой цели. Качественный состав отобранных фракций удобно контролировать методом тонкослойной хроматографии (ТСХ, разд. 4.1). Препаративная колоночная хроматография является одним из самых эффективных методов выделения органических веществ и разделения их смесей. В органическом практикуме препаративная колоночная хроматография выполняется следующим образом. Перед началом разделения исследуют пробу раствора методом тонкослойной хроматографии (ТСХ, разд 4.1; желательно со стандартом). Иногда ТСХ проводят с целью выбора элюента, обеспечивающего наиболее эффективное разделение органических соединений. Затем определяют необходимое количество носителя (силикагель или оксид алюминия), насыпая его в сухую колонку. Отмеренный носитель высыпают в широкогорлую колбу или стакан и заливают элюентом. В колонку помещают небольшое количество элюента и затем наливают суспензию носителя в элюенте, следя за тем, чтобы твердая фаза равномерно заполняла колонку и не содержала пузырьков воздуха. Колонка готова. Кран или «заглушку» внизу колонки открывают, сливают элюент до уровня 1-2 мм над носителем и аккуратно, с небольшой высоты по стенкам колонки помещают раствор разделяемой смеси в элюенте (для этого удобно использовать пипетки с изогнутым концом). Выходящий из колонки раствор (элюат) собирают небольшими порциями, контролируя их состав методом ТСХ. Как правило, требуется собрать десятки фракций. По окончании выхода из колонки целевого соединения фракции, содержащие только это соединение, объединяют и упаривают на роторном испарителе.
|