Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционно-регрессионный метод анализа. Уравнение регрессии как форма аналитического выражения статистической связи





 

Для более глубокого исследования взаимосвязи явлений рассмотренные статистические методы часто оказываются недостаточными, ибо они не позволяют выразить имеющуюся связь в виде определенного математического уравнения, характеризующего механизм взаимодействия факторных и результативного признаков. Кроме того, методы параллельных рядов и аналитических группировок эффективны лишь при малом числе факторных признаков, в то время как социально-экономические явления оказываются обычно под воздействием множества причин. Эти и другие ограничения рассмотренных ранее статистических методов анализа взаимосвязей устраняет метод корреляций и регрессий – корреляционно-регрессионный анализ, являющийся логически продолжением, углублением более элементарных методов.

Корреляционно-регрессионный анализ как общее понятие включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение результативного признака у обусловлено изменением факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.

Целью регрессионного анализа является оценка функциональной зависимости условного среднего значения результативного признака (у) от факторных ().

Регрессия может быть парной (однофакторной) и множественной (многофакторной). По форме зависимости – линейной и нелинейной, по направлению – прямой (положительной) и обратной (отрицательной).

Основной предпосылкой применения корреляционного анализа является необходимость подчинения совокупности значений всех факторных ()и результативного (у) признаков к- мерному нормальному закону распределения или близость к нему.

Это условие связано с применением метода наименьших квадратов при расчете параметров корреляционного уравнения: только при нормальном распределении метод наименьших квадратов дает оценку параметров, отвечающую принципам максимального правдоподобия. На практике эта предпосылка чаще всего выполняется приблизительно, но и тогда метод наименьших квадратов дает неплохие результаты.

Основной предпосылкой применения регрессионного анализа является то, что только результативный признак (у) подчиняется нормальному закону распределения, а факторные признаки () могут иметь произвольный закон распределения.

Уравнение регрессии или модель регрессии, выражаемая функцией

 

(),

 

будет достаточно адекватной реальному моделируемому явлению или процессу в случае соблюдения следующих требований их построения:

1. Совокупность исследуемых исходных данных должна быть однородной и описываться непрерывными функциями.

2. Моделируемые явления должны оцениваться одним или несколькими уравнениями причинно-следственных связей.

3. Все признаки должны иметь количественное (цифровое) выражение.

4. Наличие достаточно большого объема исследуемой выборочной совокупности. Обычно считают, что число наблюдений должно быть не менее чем в 5-6, а лучше – не менее чем в 10 раз больше числа факторов. Еще лучше, если число наблюдений в несколько десятков или в сотни раз больше числа факторов, тогда закон больших чисел, действует в полную силу, обеспечивает эффективное взаимопогашение случайных отклонений от закономерного характера связи признаков.

5. Отсутствие количественных ограничений на параметры модели связи.

Теоретическая обоснованность моделей взаимосвязи, построенных на основе корреляционно-регрессионного анализа, обеспечивается соблюдением следующих основных условий:

1. Все признаки и их совместные распределения должны подчиняться нормальному закону распределения.

2. Дисперсия моделируемого признака у должна все время оставаться постоянной при изменении величины у и значений факторных признаков.

3. Отдельные наблюдения моделируемого признака у должны быть независимыми, т.е. результаты, полученные в i-ом наблюдении, не должны быть связаны с предыдущими и содержать информацию о последующих наблюдениях, а также влиять на них.

Отступление от выполнения этих условий и предпосылок приводит к тому, что модель регрессии будет неадекватно отражать реально существующие связи между анализируемыми признаками.

Одной из проблем построения модели регрессии является ее размерность, т.е. определение числа факторных признаков, включаемых в модель. Их число должно быть оптимальным.

Сокращение размерности за счет исключения второстепенных, несущественных факторов (эта задача решается в основном на базе мер тесноты связи факторов с результативным признаком) позволяет получить модель, реализуемую быстрее и качественнее. В то же время построение модели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс. Практика выработала определенный критерий, позволяющий установить оптимальное соотношение между числом факторных признаков, включаемых в модель, и объемом исследуемой совокупности. Согласно данному критерию число факторных признаков х должно быть 5-6 раз меньше объема изучаемой совокупности.

Построение корреляционно-регрессионных моделей, какими бы сложными они не были, само по себе не вскрывает полностью всех причинно-следственных связей. Основой их адекватности является предварительный качественный анализ, основанный на учете специфики и особенностей сущности исследуемых социально-экономических явлений и процессов.

 

 







Дата добавления: 2014-11-10; просмотров: 4472. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия