Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка значимости показателей тесноты корреляционной связи





Показатели тесноты связи, исчисленные по данным небольшой статистической совокупности, могут искажаться действием случайных причин. Это вызывает необходимость проверки из значимости (надежности, существенности).

Для оценки значимости коэффициента корреляции применяется t–критерий Стьюдента, который определяется по формуле:

,

 

где - число степеней свободы при данном уровне значимости и объеме выборки n.

Вычисленное по формуле значение сравнивается с критическим .

Если > , то величина коэффициента корреляции признается значимой.

Для оценки значимости индекса корреляции R применяется F -критерий Фишера.

Фактическое значение критерия определяется по формуле:

 

,

где m– число параметров уравнения регрессии.

Величина сравнивается с критическим , которое определяется по таблице F –критерия с учетом принятого уровня значимости а и числа степеней свободы и .

Если > , то величина индекса корреляции признается значимой. Проверим значимость показателей тесноты корреляционной связи в нашем примере. Значимость линейного коэффициент корреляции оценим с помощью t–критерия:

 

.

 

Табличное значение t–критерия с уровнем значимости 0, 05 и числом степеней свободы равно 2, 161. Фактическое значение =15, 2 больше табличного (критического) =2, 161, следовательно, коэффициент корреляции можно признать значимым.

Оценка индекса корреляции R=0, 973 осуществляется по F–критерию. Определяется фактическое значение:

 

.

 

При уровне значимости =0, 05 и степенях свободы и табличное значение =4, 675. Сравнение =232, 3 с =4, 675, > позволяет признать индекс корреляции значимым.

Вычислим ошибку аппроксимации по формуле:

 

.

 

Так как параметры уравнения регрессии значимы, уравнение значимо, показатели тесноты значимы, ошибка аппроксимации равна 11, 3 %, коэффициент детерминации равен 0, 947, то построенная регрессионная модель зависимости объема привлеченных средств от объема собственных средств может быть использована для анализа и прогноза.

 







Дата добавления: 2014-11-10; просмотров: 2086. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия