Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описание критерия




 

Существует несколько способов использования критерия и не­сколько вариантов таблиц критических значений, соответствующих этим способам. Этот метод определяет, достаточно ли мала зона перекрещиваю­щихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значе­ния, по предварительной оценке, выше, а 2-м рядом – тот, где они предположительно ниже. Чем меньше область перекрещивающихся значений, тем более ве­роятно, что различия достоверны. Иногда эти различия называют раз­личиями в расположении двух выборок. Эмпирическое значение критерия U отражает то, насколько вели­ка зона совпадения между рядами. Поэтому чем меньше Uэмп тем более вероятно, что различия достоверны.

Гипотезы

H0: Уровень признака в группе 2 не ниже уровня признака в группе 1.

H1: Уровень признака в группе 2 ниже уровня признака в группе 1.

 

3. Н – критерий Крускала-Уоллиса

Критерий предназначен для оценки различий одновременно между тремя, четырьмя и т.д. выборками по уровню какого-либо признака. Он позволяет установить, что уровень признака изменяется при переходе от группы к группе, но не указывает на направление этих из­менений. Данный критерий является продолжением критерия U на боль­шее, чем 2, количество сопоставляемых выборок. Все индивидуальные значения ранжируются так, как если бы это была одна большая выбор­ка. Затем все индивидуальные значения возвращаются в свои первона­чальные выборки, и мы подсчитываем суммы полученных ими рангов отдельно по каждой выборке. Если различия между выборками случай­ны, суммы рангов не будут различаться сколько-нибудь существенно, так как высокие и низкие ранги равномерно распределятся между вы­борками. Но если в одной из выборок будут преобладать низкие значе­ния рангов, в другой – высокие, а в третьей – средние, то критерий Н позволит установить эти различия.

Гипотезы

HQ: Между выборками 1, 2, 3 и т. д. существуют лишь случайные раз­личия по уровню исследуемого признака.

Hj: Между выборками 1, 2, 3 и т. д. существуют неслучайные разли­чия по уровню исследуемого признака.

4. S – критерий тенденция Джонкира

Критерий S предназначен для выявления тенденций изменения признака при переходе от выборки к выборке при сопоставлении трех и более выборок. Критерий S позволяет нам упорядочить обследованные выборки по какому-либо признаку, например, по креативности, фрустрационной толерантности, гибкости и т. п.

Мы сможем утверждать, что на первом месте по выраженности исследуемого признака стоит выборка, скажем, Б, на втором – А, на третьем – В и т. д. Интерпретация полученных результатов будет зави­сеть от того, по какому принципу были образованы исследуемые вы­борки. Здесь возможны два принципиально отличных варианта.

1. Если обследованы выборки, различающиеся по качественным при­знакам (профессии, национальности, месту работы и т. п.), то с по­мощью критерия S мы сможем упорядочить выборки по количест­венно измеряемому признаку (креативности, фрустрационной толе­рантности, гибкости и т. п.).

2. Если обследованы выборки, различающиеся или специально сгруп­пированные по количественному признаку (возрасту, стажу работы, социометрическому статусу и др.), то, упорядочивая их теперь уже по другому количественному признаку, мы фактически устанавлива­ем меру связи между двумя количественными признаками. Напри­мер, мы можем показать с помощью критерия S, что при переходе от младшей возрастной группы к старшей фрустрационная толерант­ность возрастает, а гибкость, наоборот, снижается.

Критерий S основан на способе расчета, близком к принципу критерия Q Розенбаума. Все выборки располагаются в порядке возрас­тания исследуемого признака, при этом выборку, в которой значения в общем ниже, мы помещаем слева, выборку, в которой значения выше, правее, и так далее в порядке возрастания значений. Таким образом, все выборки выстраиваются слева направо в порядке возрастания зна­чений исследуемого признака.

При упорядочивании выборок мы можем опираться на средние значения в каждой выборке или даже на суммы всех значений в каж­дой выборке, потому что в каждой выборке должно быть одинаковое количество значений. Для каждого индивидуального значения подсчитывается ко­личество значений справа, превышающих его по величине. Если тен­денция возрастания признака слева направо существенна, то большая часть значений справа должна быть выше. Критерий S позволяет опре­делить, преобладают ли справа более высокие значения или нет. Стати­стика S отражает степень этого преобладания. Чем выше эмпирическое значение S, тем тенденция возрастания признака является более суще­ственной. Следовательно, если Sэмп равняется критическому значению или превышает его, нулевая гипотеза может быть отвергнута.

Гипотезы

H0: Тенденция возрастания значений признака при переходе от выбор­ки к выборке является случайной.

H1: Тенденция возрастания значений признака при переходе от выбор­ки к выборке не является случайной.

 

ПРАКТИЧЕСКИЙ БЛОК







Дата добавления: 2014-11-10; просмотров: 843. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.002 сек.) русская версия | украинская версия