Кинетика анодных процессов
Анодное поведение металлов определяется природой металла и составом раствора, в частности, pH. Значительную роль играют плотность тока и температура. Анодное растворение металла начинается с разрушения кристаллической решетки с последующим переходом его в раствор в виде простых гидратированных (или в виде комплексных) ионов. При этом значительно возрастает концентрация ионов у поверхности металла, может быть превышено произведение растворимости соли (или гидроксида при коррозии в воде), которая выпадает тогда на его поверхности, образуя не проводящую ток солевую (гидроксидную) пассивную пленку. Общую реакцию анодного растворения металла можно записать в виде уравнения Me + m H2O + k A-= MeAk(n-l)+. m H2O + ne. Образование многозарядного иона при растворении металла может происходить не в одну, а в несколько последовательных стадий: Me + m H2O = Me+ m H2O + e Me+ m H2O = Me2+ m H2O + e ........................................................... Me(n-1)+ m H2O = Men+ m H2O + e При этом возможно вступление части ионов промежуточной валентности в химические реакции с компонентами раствора. Например, В.В. Лосев показал, что растворение индия протекает стадийно с образованием промежуточного продукта - ионов одновалентного индия In+: In + m H2O In+ m H2O + e, дальнейшее окисление которых может происходить не только на электроде: In+ m H2O In3+ m H2O + 2e, но и в растворе: In+ m H2O + 2 H+ H2O In3+ m H2O + H2. Появление анодной поляризации может быть связано с замедленностью одной из стадий: разрушения твердой фазы или ионизации, транспортировки. При анодном растворении металла замедленность стадии отвода приводит к накоплению перешедших в раствор ионов вблизи электрода и, соответственно, смещает его потенциал в положительную сторону. Наблюдается некоторая симметрия процессов анодного растворения и катодного выделения металлов при не слишком больших удалениях от состояния равновесия. Так, например, анодная поляризация кадмия, серебра, свинца и олова оказывается близкой по величине катодной поляризации этих же металлов при одинаковых скоростях растворения и осаждения. Подобная аналогия проявляется и в характере изменения поверхности металла в условиях его растворения и осаждения. Анодное растворение идеальных кристаллов начинается с углов и ребер. Наличие дефектов и нарушений в структуре кристаллической решетки металла, в том числе и дислокаций, облегчает растворение его. Влияние состава раствора сказывается схожим образом при анодном растворении и катодном восстановлении целого ряда металлов. При анодном растворении наблюдается активирующее действие поверхностноактивных ионов (Cl-, Br-, I-) и тормозящее действие посторонних катионов. Однако анионные эффекты в этом случае обычно усилены, а катионные ослаблены по сравнению с катодным процессом. Анодное растворение меди и цинка протекает легче, чем их катодное осаждение. Еще большая разница наблюдается в случае металлов подгруппы железа. Анодная поляризация при растворении их значительно ниже катодной поляризации при осаждении (при той же плотности тока). Тем не менее она и здесь достигает нескольких десятых долей вольта. Причем, ряд металлов, составленный в порядке возрастания перенапряжения осаждения, дает и последовательность увеличения поляризации при анодном растворении. Все металлы по значению перенапряжения при их осаждении из растворов простых солей можно разделить на три группы: - металлы, выделяющиеся или совсем без перенапряжения (ртуть), или с очень малым перенапряжением, не превышающим при средних плотностях тока тысячных долей вольта (серебро, таллий, свинец, кадмий, олово). Токи обмена для металлов этой группы очень велики 102¸ 103А/м2; - висмут, медь, цинк - для них характерно перенапряжение порядка нескольких десятков милливольт. Токи обмена близки к 10-1А/м2; - металлы, выделяющиеся с очень большим перенапряжением (кобальт, железо, никель) - до нескольких десятых долей вольта. Токи обмена малы и составляют для железа и никеля в растворах их сульфатов соответственно 10-4и 10-5А/м2. Поведение металлов в процессе анодного растворения исследовано не так полно, как при их катодном осаждении. Все же полученные опытные данные подтверждают применимость основных положении теории электрохимического перенапряжения к металлам группы железа. Так, кинетика анодного растворения железа и никеля описывается уравнением Тафеля: a = a a+ b alg i (3.17.) Суммарная реакция анодного растворения металлов подгруппы железа помимо стадий переноса электрона включает чисто химические стадии, протекающие с участием анионов, прежде всего ионов гидроксила OH-, каталитически ускоряющих анодный процесс. Скорость и механизм анодного растворения металлов в сильной степени зависят от состава раствора. Наиболее существенную роль играют анионный состав и pH раствора. Влияние анионов проявляется в изменении строения двойного электрического слоя при их адсорбции и образовании комплексов как в объеме раствора, так и адсорбированных на поверхности металла. При адсорбции анионов происходит снижение энергии поверхностных атомов металла, что приводит к изменению скорости анодного растворения. Переход атома металла в раствор с образованием иона связан с последовательными стадиями: - адсорбция аниона с постепенным ослаблением связи атома с кристаллической решеткой, которая сопровождается, вероятно, частичным переносом заряда; - переход в раствор в виде комплексного соединения с анионами и молекулами растворителя. Чем сильнее взаимодействие между анионом и поверхностью, т.е. чем сильнее хемосорбция, тем выше вероятность образования поверхностного комплекса. Чем менее устойчив образовавшийся комплекс и чем большее число связей образует поверхностный атом с анионами, тем легче должен происходить его переход в раствор. Особенно сильное влияние на скорость процесса ионизации таких металлов, как Fe, Ni, Co, Mn, Zn, Cd, Bi, In, оказывают галогенид-ионы. Ускоряющее действие аниона проявляется выше определенной (критической) концентрации. Эта концентрация тем меньше, чем сильнее адсорбируемость галогенид-иона на металле и чем ниже устойчивость образующихся комплексных соединений. Так, для Cl-, Br-и I-критическая концентрация при растворении индия составляет соответственно 5 10-1, 5 10-2и 2 10-3кмоль/м3. Анионы галогенов принимают непосредственное участие в электродной реакции или в предшествующих ей химических стадиях. Анионы могут участвовать в анодном процессе и в том случае, когда конечными продуктами реакции являются простые ионы металла. При растворении многих металлов, особенно металлов подгруппы железа, определяющую роль играет кислотность раствора. Это связано с тем, что в электродной реакции принимают участие гидроксокомплексы металлов. Например, скорость анодного растворения железа сильно зависит от pH раствора. Причем в растворе, содержащем 2 кмоль/м3 NaOH, она на несколько порядков выше, чем в HCl концентрации 1 кмоль/м3. Для объяснения ускоряющего влияния гидроксид-ионов предложено несколько кинетических схем электродной реакции. Дж. Бокрис с сотрудниками (1961 г.) предложил схему, согласно которой в растворе даже в сравнительно кислых средах присутствуют ионы FeOH+, которые являются промежуточными частицами в суммарной электродной реакции: Fe + OH-= FeOH + e FeOH FeOH++ e (замедленная стадия) FeOH+= Fe2++ OH- или Fe + H2O = FeOH + H++ e FeOH FeOH++ e (замедленная стадия) FeOH++ H+= Fe2++ H2O. Этим схемам отвечает кинетическое уравнение: i a= k a a OH- exp[(1 + a a) F /RT]. Я.Д. Зытнер и А.Л. Ротинян (1966 г.) в результате исследования анодного и катодного процессов установили, что анодное растворение железа в сульфатных растворах происходит через образование промежуточного двухъядерного комплекса по реакции: Fe + OH-= FeOHадс. + e Fe + FeOH адс. + OH-= Fe2(OH) 2 адс. + e Fe2(OH) 2 адс. Fe2(OH)2++ e (замедленная стадия) Fe2(OH)2+= 2 Fe2++ 2 OH-+ e и определяется кинетическим уравнением: i a= k a a 2OH- exp[(2 a + a a) F /RT]. Присутствие в растворе нескольких сортов анионов вызывает их совместное участие в анодном процессе. Например, при растворении железа в сульфатных растворах с постоянной ионной концентрацией [Г.М. Флорианович, Я.М. Колотыркин с сотрудниками, 1972 г.] реакция протекает по схеме: Fe + H2O = Fe(OH)-адс+ H+ Fe(OH)-адс= Fe(OH)адс+ e Fe(OH)адс+ HSO4-= FeSO4+ H2O + e Fe(OH)адс+ SO42-= FeSO4+ OH-+ e Кроме того, скорость анодного процесса растворения металлов зависит от природы и концентрации ПАВ, находящихся в электролите.
|