Внутренние факторы электрохимической коррозии
Одним из основных внутренних факторов электрохимической коррозии является термодинамическая устойчивость металла, критерием которой в электропроводных агрессивных средах может служить стандартный электродный потенциал. А так как возможность протекания того или иного коррозионного процесса определяется соотношением потенциала металла и потенциала катодной реакции (см. раздел 3.1.), то в зависимости от величины oвсе металлы могут быть разбиты на пять групп, разделенных значениями потенциалов водородного и кислородного электродов в нейтральной и кислой средах (т.е. потенциалами основных катодных реакций): -0, 415; 0, 000; +0, 815; +1, 23 В (см. рис. 3.12). Наиболее же полную характеристику термодинамической устойчивости любого металла дают диаграммы Пурбе (раздел 3.1.4.). Напомним, что термодинамика оценивает только возможность протекания коррозионных процессов, но не их скорость, поэтому ряды термодинамической устойчивости и реальной коррозионной стойкости металлов не совпадают. В силу многофакторности коррозионных процессов положение металла в периодической системе элементов также не может служить однозначным критерием его коррозионной стойкости. Однако, как и для химических свойств, можно проследить существование закономерной периодической повторяемости коррозионных характеристик с возрастанием порядкового номера элемента. Например, наименее устойчивые металлы располагаются в первой и второй главных подгруппах, а металлы первой побочной подгруппы (Cu, Ag, Au) являются наиболее стабильными, причем их устойчивость повышается по мере возрастания атомного номера. В большинстве случаев коррозионная стойкость сплавов снижается с ростом гетерогенности их структуры. Так присутствие катодных включений обычно ускоряет равномерную коррозию. Исключение составляют только описанные в разделе 3.3. случаи катодного легирования, облегчающего переход анодной составляющей в пассивное состояние. А анодные структурные включения могут способствовать развитию различных видов локальной коррозии (см. раздел 3.4.). Правда, в некоторых случаях при незначительном содержании более электроотрицательных компонентов их избирательное растворение приводит к последующему повышению коррозионной стойкости такого " протравленного" сплава. Отметим, что сплавы, структура которых представляет собой твердые растворы, также могут подвергаться компонентно-избирательной коррозии, т. е. их поверхность нельзя считать абсолютно гомогенной. Интересно, что повышение коррозионной стойкости гомогенных сплавов с ростом содержания легирующего более электроположительного компонента происходит не плавно, а скачкообразно при достижении значений концентрации (в атомных долях), равных n/8, где n - целое число. Природу такого дискретного изменения свойств связывают с образованием так называемых сверхструктур, в которых на поверхность выходят плоскости кристаллической решетки, обогащенные или полностью занятые атомами более " благородного" компонента. В зависимости от природы металлов и степени агрессивности среды однофазный сплав может иметь от 1 до 8 порогов устойчивости Таммана, причем обычно один из них является доминирующим (т.е. на нем происходит наибольший скачок коррозионных свойств). Например, для сплава Fe - Cr реализуется 3 порога устойчивости, из которых доминирующим является первый. С ростом шероховатости поверхности металла облегчается ее смачивание, увеличивается реальная площадь контакта со средой и доступность активных центров, а также ухудшаются условия образования совершенных защитных пленок. Все это в конечном итоге приводит к снижению коррозионной стойкости. Условия термообработки металла в процессе изготовления изделия могут оказать определяющее воздействие на склонность сплава к межкристаллитной коррозии (МКК). При МКК структурная составляющая сплава, расположенная в виде непрерывных цепочек по границам зерен корродирует в активном состоянии с высокой скоростью, в то время как тело зерна находится в пассивном состоянии и почти не разрушается. В силу того, что распад твердого раствора с заметными скоростями может происходить только при повышенных температурах, ключ к ответу на вопрос о механизме возникновения МКК и путях ее предотвращения следует искать именно в режимах термообработки материалов и изделий. Резкое охлаждение прогретого до высоких температур металла (закалка) позволяет сохранить необходимую однородную структуру твердого раствора. При этом, например, можно получить пересыщенный раствор углерода в -железе. Однако при закаливании в сплаве возникают высокие внутренние напряжения, и для их снятия необходим повторный нагрев до относительно высоких температур - отпуск (для сталей t отп= 400-800 oC). Именно в процессе отпуска и происходит частичный распад твердого раствора, сопровождающийся выделением выпадающей фазы по границам зерен кристаллов (в наиболее дефектной области). Если отпуску подвергается закаленная нержавеющая сталь, то в большинстве случаев по границам зерен выпадают карбиды хрома. Причем в их образовании, в первую очередь, участвует хром приграничной области, в то время как углерод поступает из всего тела зерна. Это связано с тем, что при температурах отпуска скорость диффузии углерода намного больше, чем скорость диффузии хрома. В результате вокруг выпавших карбидов концентрация хрома в твердом растворе резко снижается, а при уменьшении ее через некоторое время до величин, меньших 12% (пороговая концентрация для Cr), образуется зона с пониженной коррозионной стойкостью, и сталь приобретает склонность к МКК. Однако, в силу того, что содержание углерода в стали невелико, по мере расходования углерода скорость диффузии хрома с какого-то момента начинает превосходить скорость образования карбидов. Поэтому при достаточно большом времени отпуска концентрация хрома в сплаве выравнивается, и сталь не подвергается МКК. Время отпуска, необходимое для появления склонности к МКК и выравнивания концентрации хрома, зависит от температуры отпуска и концентрации углерода в стали. Диаграммы в координатах t отп, oC - отп, ч, позволяющие выявить область условий отпуска, при которых сталь приобретает склонность к МКК, экспериментально получены для всех практически важных сплавов и имеются в справочной литературе. В зонах сварных швов, подвергающихся в процессе сварки длительному нагреву в интервале температур 600-800 оC, опасность возникновения склонности к МКК особенно велика. Поэтому при проведении сварочных работ необходимо установить максимально допустимое время прогрева свариваемых узлов и деталей. Наличие в готовом изделии внутренних напряжений, предварительных деформаций, наклепа, нагартовки и т. п. может существенно повлиять на развитие коррозионно-механических разрушений: растягивающие внутренние напряжения облегчают развитие коррозионного растрескивания, а любое поверхностное упрочнение металла снижает вероятность возникновения подобных видов разрушений.
|