УСТОЙЧИВОСТЬ И КОАГУЛЯЦИЯ КОЛЛОИДНЫХ СИСТЕМ
Под устойчивостью дисперсной системы понимают постоянство во времени ее состояния и основных свойств: дисперсности, равномерного распределения частиц дисперсной фазы в объеме дисперсионной среды и характера взаимодействия между частицами. Н.П. Песков ввел понятие о двух видах устойчивости дисперсных систем: седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет сохранять равномерное распределение частиц в объеме. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем – это способность сохранять во времени степень дисперсности. Причиной этого типа устойчивости является наличие одинакового заряда коллоидных частиц. Вопросы устойчивости дисперсных систем занимают важное место в коллоидной химии. Обладая большой суммарной площадью поверхности раздела фаз, дисперсные системы имеют избыток свободной поверхностной энергии: G = σ S, где σ – поверхностное натяжение; S –суммарная площадь поверхности раздела фаз.
Вследствие этого коллоидные системы термодинамически неустойчивы и стремятся перейти в более устойчивое состояние с меньшим значением G. Это возможно либо за счет уменьшения σ, либо уменьшения S (укрупнения частиц). Процесс объединения частиц дисперсной фазы в более крупные агрегаты, сопровождающиеся выпадением осадка труднорастворимого вещества, называют коагуляцией. Коагуляция протекает самопроизвольно, так как ведет к уменьшению суммарной поверхности и, следовательно, к снижению поверхностной энергии. Факторами, вызывающими коагуляцию, могут быть: изменение температуры, действие света, различных излучений, механическое воздействие. Однако наиболее важным фактором является действие электролитов. Электролиты, добавленные к золям, быстро и резко влияют на величину φ - и ζ -потенциалов, вызывая сжатие ДЭС. Закономерности влияния электролитов на процессы коагуляции установлены Шульце и Гарди и известны как правило Шульце – Гарди: коагулирующим действием обладает тот ион электролита, который имеет заряд, противоположный заряду гранулы; коагулирующее действие тем сильнее, чем выше заряд иона- коагулятора. Минимальная концентрация электролита, при которой данный электролит вызывает коагуляцию, называется порогом коагуляции. Его рассчитывают: Ск = (Сэк · V) электролита / (Vзоля + Vэлектролита), (моль/л), где Сэк – молярная концентрация эквивалентов электролита; Vзоля – объем золя, л; Vэлектролита – объем электролита, л. Величина, обратная порогу коагуляции, называется коагулирующей способностью: Vк = 1/ Ск, (л/моль). Коагулирующая способность равна объему золя в литрах, скоагулированного одним молем электролита. Отношение порогов коагуляции для ионов разных зарядов было найдено теоретически Б.В.Дерягиным и Л.Д. Ландау и названо законом шестой степени. Согласно закону Дерягина− Ландау соотношение порогов коагуляции одно-, двух - и трехзарядных ионов имеет вид: Ск I: Ск II: Ск III = (1/1)6: (1/2)6 : (1/3)6 =730: 11: 1. Правило Шульце-Гарди на основании опытных данных дает для тех же ионов соотношение 500: 25: 1. Таким образом, с увеличением зарядов ионов-коагуляторов порог коагуляции уменьшается, а коагулирующая способность возрастает.
|