Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Раздел 5. Задачи ЕГЭ. 1. Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет




1. Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет, концентрацию углекислого газа, температуру. Почему эти факторы являются лимитирующими для реакций фотосинтеза?

2. Приведите не менее 3-х факторов, которые способствуют регуляции численности волков в экосистеме.

3. В небольшом водоеме, образовавшемся после разлива реки, обнаружены следующие организмы: инфузории – туфельки, дафнии, белые планарии, большой прудовик, циклопы, гидры. Объясните, можно ли этот


водоем считать экосистемой. Приведите не менее 3-х доказательств.

4. В водной экосистеме обитают цапли, водоросли, окуни, плотва. Опишите размещение этих организмов по разным трофическим уровням в соответствии с правилом экологической пирамиды и объясните изменения, которые произойдут в экосистеме, если численность водорослей увеличится, а цапель – уменьшится.

5. В биогеоценозе леса провели обработку деревьев ядохимикатами для уничтожения комаров и мошек. Укажите не менее трех последствий воздействия этого мероприятия на биогеоценоз леса.

6. К каким изменениям в экосистеме озера может привести сокращение численности хищных рыб? Укажите не менее трех изменений.

7. Объясните, какой вред растениям наносят кислотные дожди. Приведите не менее трех причин.

8. Как повлияет на круговорот углерода на Земле сокращение численности редуцентов?

9. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, объясните их.

1. В состав пищевой цепи биогеоценоза входят продуценты, консументы и редуценты. 2. Первым звеном пищевой цепи являются консументы. 3. У консументов на свету накапливается энергия, усвоенная в процессе фотосинтеза. 4. В темной фазе фотосинтеза выделяется кислород. 5. Редуценты способствуют освобождению энергии, накопленной консументами и продуцентами.

10. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, объясните их.


1. Согласно В.И. Вернадскому, живое вещество – это совокупность живых организмов, существующих в данный момент, численно выраженное в весе и химическом составе. 2. Живое вещество пронизывает всю атмосферу, часть гидросферы и литосферы. 3. Живое вещество выполняет в биосфере газовую и концентрационную функции. 4. В ходе эволюции живого вещества его функции изменялись, становились более разнообразными.

5. Некоторые функции живого вещества, такие, как усвоение молекулярного азота, окисление и восстановление элементов с переменной валентностью, могут выполнять только растения. 6. Живое вещество организовано в биоценозы – живые компоненты экосистемы.


Ответы к задачам

 


 

Раздел 1:


Часть 1.


1. Ц Г Т ГАТТТТ ГГТ Т ГТА Г Ц АЦТААААЦЦААЦАТ

2. ЦАЦАУУГЦУГГЦУАУАААЦАУ; 7,14 нм. 3. А=25%; Т=25%; Г=25%; Ц=25%.

4. ААААААТЦЦТАГТ; ААААААУЦЦУАЦГУ. 5. 1120; 1120; 880; 680 нм.

6. ТЦАТГГЦТАТГААЦТАААТГЦ ; 7,14 нм.

| | | | | | | | | | | | | | | | | | | | |

АГТАЦЦГАТАЦТТГАТТТАЦГ

7. Т=15%; Г=35%; Ц=35%; 340нм.

8. 3400 нм.

9. А=26%; Т=26%; Г=24%; Ц=24%.

10. 51 нм. Раздел 2.

1. 100.

2. 8; 8.

3. Валин, лизин, лейцин; ЦАА, ЦАГ, ЦАТ, ЦАЦ; ААА, ААГ; АЦЦ.

4. 4200.

5. 420000

6. Ген, в 16,4 раз.

7. Г=180; Ц=180; А=270; Т=270; 153 нм.

8. 120; А=90, Т=90, Ц=270, Г=270.

9. 66.

10. 612 нм; 400; А=16,7%, У=25%, Г=50%, Ц=8,3%; 400.

Раздел 3

1. Лиз-глн-вал-тре-асп-фен;

2. Глн-асп-фен-про-гли; глн-асп-лей-сер-арг;


3. ТГА – ЦГА – ТТТ – ЦАА (один из вариантов);

4. Тре-иле- лиз-вал;

5. УУУ; ГУУ; ЦАА; УГУ;

6. ААУ; ЦАЦ; ГАУ; ЦЦУ;

7. В первом, если выбитый нуклеотид стоит в начале гена;

8. Меняется триплет ЦТТ (ЦТЦ) в кодирующей цепи гена на триплет ЦАА (ЦАГ, ЦАТ, ЦАЦ);

9. Иле-тир-тре-фен-тир (один из вариантов);

10. ЦГА-ТГА-ЦАА (один из вариантов); ЦГА, ЦГГ, ЦГУ, ЦГЦ; УГА, УГГ, УГУ, УГЦ; ЦГА, ЦГГ, ЦГУ, ЦГЦ.

Раздел 4.

1. а) 28; 18; б) 142; в) 5680 кдж, в макроэргических связях; г) 84;

2. а) 7; б) 2,5; 4,5; в) 176; 7040 кдж; г) 15;

3. 5480 кдж;

4. 8400 кдж; 30.

5. 128; 14; 18;

6. Нет; 0,36.

7. 28,4 г; 0,95.

8. 15.

Раздел 5

1. А=15%; Г=35%; Ц=35%.

2. ГГТАТЦГ; 18. 3. 52,02 НМ; 51.

4. А=400; Т=400; Г=350; Ц=350; 250.

5. 30; 30; 90.

6. 40; 40; 40.

7. ГГГТГГЦГТЦАТ; ГГГ, УГГ, ЦГУ, ЦАУ; про-тре- ала-вал.


8. ЦАЦАААЦУЦГУА; ГУГ, УУУ, ГАГ,ЦАУ; гис-лиз- лей-вал.

9. ГТЦГААГЦАТГГГЦТ; ЦАГЦУУЦГУАЦЦЦГА; глн-лей-арг-тре-арг.

10. ЦГГАУУААУГЦЦЦГУ; лей.

11. АУГАААЦГГГУУ; ТАЦТТТГЦЦЦАА; мет-лиз-арг- вал.

12. Элементы ответа:

А) произойдёт генная мутация – изменится кодон третьей аминокислоты;

Б) в белке может произойти замена одной аминокислоты на другую, в результате изменится первичная структура белка;

В) могут изменится все остальные структуры белка, что повлечёт за собой появление у организма нового признака.

 


 

Раздел 1.


Часть 2.


1. AbDCE, AbDCe, AbDcE, AbDce, abDCE, abDCe, abDcE, abDce. Образование каждого из них равновероятно (по 12,5%).

2. Два типа гамет: AbC и aBc с равной вероятностью

(по 50%).

3. Четыре типа гамет: MnP, Mnp, mnP и mnp с вероятностью 25% каждый.

4. FjH, fJh, Fjh, fJH (по 15 %); FJH, fjh, fjH, FJh (по 10

%).

5. а)Некроссоверные гаметы: Ab cd, AB CD, Ab CD, AB cd (по 20 % каждый тип); кроссоверные гаметы: Ab cD, AB Cd, AB cD, Ab Cd (по 5 %). Реально число потомков с рекомбинантными сочетаниями


генов будет несколько меньше, т.к. между генами одной хромосомы возможны также случаи двойного кроссинговера, возвращающие анализируемые гены в исходные хромосомы.

б) Некроссоверные гаметы: AB CD, ab cd, AB cd, abCD (всего 72 %); кроссоверные типы гамет по генам AB: Ab CD, aB cd, Ab cd, aB CD (всего 8 %); кроссоверные типы гамет по генам СD: AB Cd, abcD, AB cD, ab Cd (всего 18 %); кроссоверные типы гамет одновременно по генам СD и AB: Ab Cd, aBcD, Ab cD, aB Cd (всего 2%).

с) Некроссоверные гаметы: Ab cD, AB Cd, Ab Cd, AB cD (всего 80 %); кроссоверные гаметы: Ab CD, Ab cd, AB CD, Ab cd (всего около 20 %).

Раздел 2.

1. 25%

2. F1: все черные, F2: 3 доли черных: 1- красных; Fa:

красных и черных примерно поровну.

3. F1: все коричневые, F2: 3 доли коричневых: 1- серых; Fa: 50% коричневых: 50% серых.

4. F1: все иммунные, F2: 3 доли иммунных: 1- больных; Fa: 50% иммунных: 50% больных.

5. Окраска определяется по типу неполного доминирования, кремовые свинки всегда гетерозиготны, поэтому при скрещиваниях между собой дают расщепление 1:2:1.

6. Признак наследуется по типу аллельного исключения. Горностаевая окраска наблюдается у гетерозигот; родителей белых и черных пород.

7. Самка 1 – Aa, самка 2 – AA, самец – аа; F: в первом случае – Аа и аа, во втором случае – Аа.


8. Вероятность рождения здоровых детей – 50%,

больных - 50%

9. Доминантным геном; 50 %.

Раздел 3.

1. Ребенок первой родительской пары имеет группу крови – O (I); второй – A (II), третьей – AB (VI), четвертой – B (III).

2. Ребенок с группой крови O – сын первой пары; ребенок с группой крови A – сын второй пары.

3. I – 50 %, II – 25 %, III – 25 %, IV – 0%.

4. Ребенок с первой группой крови – родной, со второй

– приемный.

Раздел 4.

1. F1- все черные, комолые; F2: - 9 долей черных комолых, 3 доли – черных рогатых, 3 доли – красных комолых, 1 доля – красных рогатых.

2. Все гибриды F1– нормального роста раннеспелые; F2: 9 долей – раннеспелых нормального роста, 3 – раннеспелых гигантов, 3 – позднеспелых нормального роста, 1 – позднеспелых гигантов.

3. Генотип мужчины – aaBb, генотип первой жены – AaBb, генотип второй жены – AABB.

4. Мальчики: 3 доли – кареглазых, предрасположенных к раннему облысению, 3 доли – голубоглазых, предрасположенных к раннему облысению; 1 доля – кареглазых, с нормальными волосами, 1 доля – голубоглазых с нормальными волосами. Девочки: 3 доли – кареглазых с нормальными волосами, 3 доли – голубоглазых с нормальными волосами, 1 доля – кареглазых, предрасположенных к раннему облысению, 1 доля – голубоглазых, предрасположенных к раннему облысению.


5. Вероятность рождения ребенка с требуемым фенотипом – 3/16.

6. F1: курчавые, короткошерстные, черные; F2: следует ожидать появления 8 фенотипических классов в соотношении: 27:9:9:9:3:3:3:1; Fа: 8 фенотипических классов в равном соотношении.

7. Дигетерозиготы.

8. Типы гамет мужчины (Ab и ab); генотипы детей. AaBb, aabb, aaBb; с обеими аномалиями – 25 %; с одной – 50 %; без аномалий – 25 %.

9. Признак остистости определяется по типу полного доминирования, плотность колоса – по типу неполного доминирования. Генотипы родительских форм: AAbb, aaBB.

10. По обоим признакам имеет место моногенное наследование при полном доминировании между аллелями.

11. а) 3%; б) 0%; в) 6 %.

Раздел 5.

1. 1 доля желтых: 1 доля серых; 2 доли желтых: 1 доля серых; в первом скрещивании.

2. 50% – хохлатых, 50% – нормальных.

3. Серая окраска доминирует над черной, гомозиготы по гену серой окраски – летальны.

4. Гомозиготы по каждому из анализируемых генов летальны, что приводит к соответствующему нарушению ожидаемого расщепления (9:3:3:1).

Раздел 6.

1. Вероятность рождения больных мальчиков – 20 %;

девочки не болеют.


2. В 50% случаев дети будут иметь ген шизофрении, однако лишь 10 % детей будут страдать данным заболеванием.

3. Вероятность, что девушка является носителем гена диабета составляет 50%; вероятность того, что она заболеет с возрастом – 10 %; вероятность того, что ее дети будут иметь ген сахарного диабета (при условии, что муж здоров) – 25%, что они будут больные – 5%.

4. 55%, 15% и 0% соответственно. Раздел 7.

1. Соотношение в F2составляет 9:7, что соотвествует дигибридному скрещиванию при взаимодействии генов по типу двойного рецессивного эпистаза.

2. В F2при анализе по одному признаку наблюдается соотношение 9:3:3:1, что происходит при взаимодействии генов по типу комплементарности; генотипы: P – ААВВ и аавв; F1– 9А_В_, 3А_вв, 3ааВ_, 1аавв. Такие же результаты скрещиваний получатся, если скрестить гомозиготных желтого и голубого попугайчиков (при этом не важно какой из полов будет иметь тот или иной признак).

3. Родительcкие норки: AAbb и aaBB (обе платиновые), в F29 коричневых к 7 платиновым.

4. Соотношение в потомстве F2примерно 12:3:1 (отклонения связаны с небольшой выборкой), что соответствует взаимодействию неаллельных генов по типу доминантного эпистаза, при условии, что рецессивная дигомозигота имеет специфический фенотип. Генотипы родителей: aaSS (агути), AAss (черный); S – ген-супрессор.

5. Наследование по типу доминантного эпистаза

(соотношение 13:3), при этом рецессивная


дигомозигота не имеет специфического фенотипа. Генотипы P – ААВВ и аавв, F1– АаВа, F2– 9А_В_, 3А_вв, аавв (все белые), 3ааВ_(пурпурные).

6. Соотношение фенотипических классов 1:4:6:4:1 соответствует взаимодействию генов по типу кумулятивной полимерии при дигибридном скрещивании. Генотипы P – А1А1А2А2и а1а1а2а2, F1– А1а1А2а2, F2– 1А1А1А2А2(негры), 2А1А1А2а2+ 2 А1а1А2А2(темные мулаты), 4А1а1А2а2+1А1А1а2а2+ 1а1а1А2А2(мулаты), 2А1а1а2а2+ 2 а1а1А2а2 – (светлые мулаты), 1а1а1а2а2(белые). Т.к. белая женщина передаст детям гены белой кожи, в таких браках негры появиться не могут.

7. Соотношение 15:1 наблюдается при взаимодействии двух генов по типу некумулятивной полимерии, появление белых проростков возможно лишь при самоопылении дигетерозиготного растения; генотип А1а1А2а2.

Раздел 8.

1. Вероятность рождения больной дочери – 0%;

больного сына – 50%.

2. Все девочки будут здоровы (из них половина являются носительницами гена гемофилии). Половина мальчиков – здоровы, половина – гемофилики.

3. Мать – гетерозиготный носитель (XHXh). У дочери возможно появление больных гемофилией детей с

вероятностью 25 % (только мальчиков), у сына вероятность рождения больных детей равна 0 (если его жена не будет носительницей гена гемофилии).

4. В первом случае все кошки будут черепаховые, все коты – желтые, во втором - равновероятно появление

 


черепаховых и черных кошек, черных и желтых котов. Черепаховую окраску в типичном случае кот иметь не может (т.к. является гемизиготой по анализируемому гену). Теоретически он может появиться при геномной аномалии у гетерозиготной самки (нерасхождение X-хромосом при образовании яйцеклетки), генотип XAXaY.

5. В F1все самцы будут зеленые (ZBZb), все самки – коричневые (ZbW); в F2– половина самок коричневые (ZbW), половина – зеленые (ZBW); половина самцов – зеленые (ZBZb), половина – коричневые (ZbZb).

6. Ген дальтонизма сын может получить только с X-

хромосомой от матери.

7. a) Все дети и внуки будут здоровы; б) все дочери будут больны, все мальчики – здоровы (но будут нести аллель диатеза в X-хромосоме).

8. Все мальчики будут больны, все девочки – здоровы; голандрическое наследование.

9. Ген окраски глаз сцеплен с полом, ген длины крыла – аутосомный. Родительская самка – гетерозиготна по обоим генам, самец – доминантная гемизигота по окраске глаз и гетерозигота по гену длины крыла.

10. Вероятность рождения ребенка без аномалии составляет 25 % (обязательно девочки). Дочь здорова, поэтому вероятность рождения больных внуков равна 0.

11. Вероятность рождения детей с обеими аномалиями

– 11%.

Раздел 9.

1. а) нет; б) да, но для перевода данных о доле появляющихся кроссоверных потомков на расстояние между генами, процент кроссоверов


нужно умножить на 2 (т.к. половина особей, получивших кроссоверные гаметы от самки, будут нести одновременно и два доминантных аллеля от самца, и, следовательно, иметь некроссоверный фенотип).

2. Признаки частично сцеплены.

3. Растение 1: AB ; растение 2: Ab .Частота

ab aB

кроссинговера между генами – примерно 10 %.

4. a) самки: XABXab, XabXab(по 40 %); XAbXab, XaBXab(по 10 %); самцы: XABY, XabY (по 40 %), XAbY, XaBY (по 10 %);

б) самки: XAbXAB, XabXAB(по 50%); самцы: XAbY, XabY (по 50%);

в) самки: XAbXAb, XaBXAb(по 40 %); XABXАb, XabXAb(по 10 %); самцы: XAbY, XaBY (по 40 %); XABY, XabY (по 10 %).

Раздел 10.

1. а) 2Aa, 2A, AA, a, AAa, 0; б) 2Aa, 2a, aa, A, Aaa, 0. Триплоиды являются несбалансированными полиплоидами и почти всегда образуют лишь анеуплоидные (стерильные) гаметы.

2. 1 доля темно-розовых, 2 доли розовых, 1 доля –

светло-розовых.

3. Генотипы родителей: a)AAAA и aaaa б) AAaa и aaaa.

4. 5 долей - растения, имеющие окрашенные цветки, 1

доля – белые.

Раздел 11.

1. F1– 50 %, F2– 33%, F3– 14 %, F4– 6,6%.

2. Частота аллеля A – 68,5%, частота аллеля B – 31,5%; частоты генотипов: AA – 39,5%, AB – 58%; BB – 2,5%.


3. Частоты генотипов: AA – 30,2%, Aa – 49,5%, aa – 20,3%.

4. а) F1: частоты аллелей: A – 57,1%, a – 42,9%; частоты генотипов AA – 32,6%, Aa – 49%, aa – 18,4%; F2: A – 70,7%, a – 29,3%; частоты генотипов AA – 49,9%, Aa

– 41,5%, aa – 8,6%.

б) в следующем поколении останутся только особи с генотипом aa.

5. В Казани – 31,4%; во Владивостоке – 5,3%.

Раздел 12.

1. P – aaBB, AAbb; F1 - AaBb – черные короткошерстные – 100%; F2– 1 AABB, 2 AaBB, 2 AABb, 4 AaBb, 1 aaBB, 2 aaBb, 1AAbb, 2 Aabb, 1 aabb; 9/16 черных короткошерстных, 3/16 черных длинношерстных, 3/16 коричневых короткошерстных, 1/16 коричневых длинношерстных.

2. P – AaBb, Aabb; F1- 1 AABb, 2 AaBb, 1 AAbb, 2 Aabb, 1 aaBb, 1 aabb; действует III закон Менделя – независимое комбинирование генов (признаков).

3. P – aaBB, Aabb; F1- AaBb, aaBb: F2– 3/8 черные с гребнем, 3/8 красные с гребнем, 1/8 черные без гребня, 1/8 красные без гребня.

4. P – AaBb, AaBb; aabb; F1– дети: со свободно мочкой и треугольной ямкой, свободной мочкой и гладким подбородком, сросшейся мочкой и треугольной ямкой; AABB, AaBB, AABb, AaBb, AAbb, Aabb, aaBB, aaBb.

5. P – aabb, AaBb; F1- AaBb, Aabb, aaBb, aabb; 25%.

6. Бабушки – AАbb, aaBB; дедушки – AABB; P – AABb, AaBB, здоровые; 0%.


7. P – aabb, AaBb; AaBb – нормальное зрение, синдром Марфана; aaBb – глаукома, синдром Марфана; aabb – глаукома, норма; Aabb – здоровый; 25%.

8. P – AABB, aaBb; F1- AaBB, AaBb; F2– 3/8 комолые красные, 3/8 комолые чалые, 1/8 рогатые красные, 1/8 рогатые чалые.

9. P – AaBb, aaBB; F1- AaBB, aaBB, AaBb, aaВb; 1/4 - розовые узкие, 1/4 – белые узкие, 1/4 - розовые с промежуточными листьями, 1/4 – белые с промежуточными листьями.

10. P – AABB, aabb; F1 - AaBb; F2– AABB, 2 AaBb, aabb; 3/4 нормальной высоты, округлые плоды; 1/4 карликовые с овальными плодами.

11. P – AaBb, aabb; F1 - AaBb (серое тело, нормальные крылья), aabb (черное тело, укороченные крылья), Aabb (серое тело, укороченные крылья), aaBb (черное тело, нормальные крылья); происходит кроссинговер.

12. P – AaXDXd, aaXDY; F1– AaXDXD, aaXDXD, AaXDXd, aaXDXd, AaXDY, aaXDY, AaXdY, aaXdY; 25% (девочки).

13. Темный цвет эмали; P – XaXa, XAY; F1– XAXa, XaY.

14. P – AAXHXH, aaXHY; F1– AaXHXh– здоровая девочка, AaXHY – здоровый мальчик.

15. P - IAi0, IBIB; F1– IAIB(IV группа), IBi0(III группа); 0%.

16. Доминантный, не сцеплен с полом; F1– 1, 3, 5, 6 – Aa; - 2, 4 –aa.

17. Рецессивный, сцеплен с полом; P - XAXa, XAY; F1– XaY.


 

Раздел 1.


Часть 3.


1. 1. На одной территории не могут совместно обитать виды 1 и 2, поскольку их экологические требования к среде обитания диаметрально противоположны.

2. Распространение вида 3 в большей степени лимитирует влажность.

3. Вид 1 – криофильный ксеробионт, а вид 2 –

термофильный гигробионт.

4. Диапазон условий среды, обозначенный белым квадратом, лучше других видов будет переносить вид 1.

5. Эвритермным является вид 3, а виды 1 и 2 –

стенотермны.

2.

Для того чтобы избавиться от клещика без использования пестицидов, нужно создать условия, выходящие за пределы его толерантности (например,


те, что обозначены на рисунке черным кружком –

температура ниже 7°С и влажность воздуха ниже 10%).

3. 1. Весовая нагрузка на опорную поверхность определяет возможности лучшего передвижения животных в условиях сыпучего субстрата (песка, снега). На примере куропаток и копытных видно, что у северных животных, проводящих значительную часть времени жизни в условиях снегового покрова, этот показатель меньше, чем у тех животных, которые приспособлены к этому экологическому фактору в меньшей степени.

2. Заяц-беляк, живущий в условиях рыхлого лесного снега, имеет меньшую весовую нагрузку, чем заяц- русак, обитающий в открытых местообитаниях, где снег уплотнен действием ветра.

3. Хотя у рыси и лося показатели весовой нагрузки на опорную поверхность сходные, огромное значение имеет еще и длина конечности и подвижность сустава

– по глубокому и рыхлому снегу лось передвигается лучше, чем рысь.

4. 1. Гомойотермное («теплокровное») животное.

2. Птицы и большинство млекопитающих (кроме тех, которые впадают в состояние сезонной неактивности

- зимнюю спячку).

3. Пороговые значения температур (кардинальные точки); зона нормы (обычные значения температур); зона оптимальных температур (теплопродукция минимальна).

4. Морфологические: перьевой и волосяной покров, подкожная жировая клетчатка; физиологические: деятельность потовых желез, изменение просвета капилляров кожи, интенсивный обмен веществ,

 


обеспечиваемый прогрессивным строением кровеносной и дыхательной систем.

5. Высокая теплопродукция в зоне от t1 до t2 должно обеспечить прогрев организма за счет интенсивной выработки эндогенного тепла. Повышение теплопродукции в зоне от t5 до t6 – в условиях перегрева организма белки-регуляторы перестают обеспечивать согласованную терморегуляцию, в результате чего температура тела резко растет, что может привести к денатурации термонестабильных белков и гибели организма.

5.1. В точке 1 - высокой температурой; в точке 2 – запредельно низкой влажностью; в точке 3 – крайне низкой температурой.

2. Значения температур в диапазоне от 12 до 22°С при влажности от 65 до 85%.

3. Пределы выносливости вида в отношении температур составляют от 2 до 40°С. Минимально-допустимая влажность составляет 20%, но она находится в сильной зависимости от температуры воздуха.

6.1. Скорость развития насекомых находится в зависимости от температуры среды обитания, подчиняясь в определенном интервале правилу Вант- Гоффа: «Скорость эндотермических химических реакций с повышением температуры на 10° увеличивается в 2-3 раза».

2. Такая же зависимость скорости развития от температуры обнаружена и у других пойкилотермных животных – ракообразных, паукообразных, рыб и амфибий.

3. При температурах, близких к минимально-пороговым, скорость реакций мала и незначительное увеличение

 


ее не вызывает такого существенного увеличения скорости, как при температурах в физиологически- нормальном диапазоне.

4. Поскольку катализаторами биохимических реакций в организме являются белки, при достижении предельных температур (выше 33°), скорость этих реакций начинает лавинообразно снижаться по причине денатурации белков.

7.1. Муравьи в качестве кормового объекта доступны пестрому дятлу лишь в весенне-летний период, причем в это время они являются массовым источником пищи. В разгар лета и осенью дятлы делают ставку на размножившихся насекомых- ксилофагов, чьих личинок добывают из-под коры деревьев. Однако, их извлечение сопряжено со значительной тратой времени и энергии, что невыгодно в зимних условиях. Поэтому в осенне- зимний период излюбленным кормом дятлов становятся поспевающие в шишках семена хвойных, на добывание которых тратится меньше времени и сил.

2. Во второй половине лета (июль-август).

3. Необходимы для обеспечения полноценными кормами растущих птенцов.

8.1. Характер активности песчанок определяется ходом температур.

2. В марте они активны лишь в дневное время суток, когда воздух и субстрат достаточно прогреты (максимум активности наблюдается в полдень, когда наиболее тепло). В июле, когда в пустыне слишком жарко, у песчанок наблюдается два пика активности: один – рано утром, другой – вечером. Неактивное


состояние в разгар дня (с 10 до 15 часов) связано с очень высокими дневными температурами.

3. В сентябре достаточно высокая активность песчанок удерживается на протяжении большей части светлого времени суток (с 8 до 17 часов), что связано как с более комфортными температурными условиями, так и с большим количеством корма (созревшие семена), который необходим для того, чтобы можно было запасти его для выживания на протяжении грядущей зимы.

9. Менее чем через 4,5 часа.

 

Раздел 2.

1. Увеличилась в 1,5 раза; можно выдать 2025 лицензий на отстрел.

2. В популяции будет насчитываться 480 самок, 720 самцов и 1440 молодых.

3. 10 взрослых лещей; 99,98%.

4. На стадии от икры до малька - 80%, от малька до серебрянки – 90%, от серебрянки до взрослой стадии – 97%; общая смертность составляет 99,94%.

5. Наиболее интенсивное самоизреживание елей происходит в возрасте от 20 до 40 лет.

В 20-летних насаждениях на одно дерево приходится 1,5 м2 площади, в 40-летних – 4,2 м2, в 60-летних – 8,6м2, в 80-летних – 13,2 м2, в 120-летних – 21,5 м2. Заранее снижать плотность посадки деревьев до уровня, соответствующего зрелому лесу не стоит, поскольку совместное выживание густых молодых посадок более вероятно, чем отдельных деревьев. Кроме того, это в дальнейшем обеспечит


преимущественное выживание наиболее приспособленных особей.

 

7000

 

 

5000

 

 

 

 

 

20 40 60 80 100







Дата добавления: 2014-11-12; просмотров: 2473. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2019 год . (0.026 сек.) русская версия | украинская версия