Р -> q) л (q -> г) р —> г
Вывод в чисто условном умозаключении основывается на правиле: следствие следствия есть следствие основания. Умозаключение, в котором заключение получается из двух условных посылок, относится к простым. Однако заключение может следовать из большего числа посылок, которые образуют цепь условных суждений. Такие умозаключения называются сложными. Они будут рассмотрены в § 5. Условно-категорическое умозаключение Условно-категорическим называется умозаключение, в котором одна из посылок —условное, а другая посылка и заключение — категорические суждения. Это умозаключение имеет два правильных модуса: 1) утверждающий и 2) отрицающий. 1. В утверждающем модусе (modus ponens) посылка, выраженная категорическим суждением, утверждает истинность основания условной посылки, а заключение утверждает истинность следствия; рассуждение направлено от утверждения истинности основания к утверждению истинности следствия. Например: Если иск предъявлен недееспособным лицом (р), то суд оставляет иск без рассмотрения (q) Иск предъявлен недееспособным лицом (р) Суд оставляет иск без рассмотрения (q) Первая посылка — условное суждение, выражающее связь основания (р) и следствия (q). Вторая посылка — категорическое суждение, в котором утверждается истинность основания (р): иск предъявлен недееспособным лицом. Признав истинность основания (р), мы признаем истинность следствия (q): суд оставляет иск без рассмотрения. 10- IW2 Утверждающий модус дает достоверные выводы. Он имеет схему: (1)Р^«'-Р. 2. В отрицающем модусе (modus tollens) посылка, выраженная категорическим суждением, отрицает истинность следствия условной посылки, а заключение отрицает истинность основания. Рассуждение направлено от отрицания истинности следствия к отрицанию истинности основания. Например: Если иск предъявлен недееспособным лицом (р), то суд оставляет иск без рассмотрения (q) Суд не оставил иск без рассмотрения (не-q) Неверно, что иск предъявлен недееспособным лицом (не-р)1 Схема отрицающего модуса: пл р^ч^д. ^ " ip Нетрудно установить, что возможны еще две разновидности условно-категорического силлогизма: от отрицания истинности основания к отрицанию истинности следствия (3) и от утверждения истинности следствия к утверждению истинности основания(4), т.е.: (3) Р-^Р, \ / ^Ч А (4)-^Г- | Однако заключение по этим модусам не будет достоверными Так, если в примере, приведенном выше, основание условной посылки отрицается: неверно, что иск предъявлен недееспособным лицом (схема 3), нельзя с достоверностью отрицать истинность следствия: неверно, что суд оставляет иск без рассмотрения. Суд может оставить иск без рассмотрения и по другим обстоятельствам, например в результате истечения срока исковой давности. Утверждение следствия: суд оставляет иск без рассмотрения (схема 4) не влечет с необходимостью истинность основания: суд Поскольку двойное отрицание равнозначно утверждению, вывод можно записать так: «Иск предъявлен дееспособным лицом». Модусы могут быть представлены в записи: 1) ((р-щ) л р)-щ; 2) ((р-кО л-1 q)-»1 р; 3) ((р-к]) л1 р)-П q; 4) ((р-к)), может оставить иск без рассмотрения не только в результате недееспособности истца, но и по другим причинам. Итак, из четырех модусов условно-категорического умозаключения, исчерпывающих все возможные комбинации посылок, достоверные заключения дают два: утверждающий (modus ponens) (1) и отрицающий (modus tollens) (2). Они выражают законы логики и называются правильными модусами условно-категорического умозаключения. Эти модусы подчиняются правилу: утверждение основания ведет к утверждению следствия и отрицание следствия — к отрицанию основания. Два других модуса (3 и 4) достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходимостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания. Необходимость вывода по утверждающему и отрицающему модусам можно показать с помощью таблиц истинности. Утверждающий модус (рис. 53).
Рис. 53 Истинность импликации (столбик 3) зависит от истинности антецедента (основания) (1) и консеквента (следствия) (2). Импликация считается ложной тогда и только тогда, когда антецедент истинен, а консеквент ложен (2-я строка таблицы). Во всех остальных случаях импликация истинна. Истинность или ложность конъюнкции (4-й столбик) также зависит от составляющих ее членов (3 и 1). Конъюнкция истинна тогда и только тогда, когда истинны оба ее члена (1-я строка таблицы). Теперь установим истинность импликации (5-й столбик таблицы — утверждающий модус). Так как импликация антецедента (4) и консеквента (2) не содержит случая, когда антецедент истинен, а консеквент ложен, то импликация всегда истинна. Следовательно, высказывание ((р —> q) л р) —> q является логическим законом. Отрицающий модус (рис. 54). В столбиках 1 и 3, 2 и 4 показано, что если одно высказывание ложно, то его отрицание истинно. Импликация р и q (1 и 2) ложна только в одном случае (2-я строка таблицы) — столбик 5. Конъюнкция (столбик 6) высказываний (р—> ц) и I q (5 и 4) истинна только в одном случае (4-я строка таблицы). Импликация ((p—> q) л " 1 q) и П р (6 и 3) всегда истинна, так как не содержит случая, когда антецедент истинен, а консеквент ложен. Следовательно, высказывание ((p—»q) л Ч q)—> " 1 р является логическим законом. С помощью таблиц истинности можно показать недостоверность выводов по неправильным модусам.
Рис.54 Ц| При анализе условно-категорического умозаключения нужно иметь в виду следующее. Во-первых, основание и следствие большей посылки может быть как утвердительным, так и отрицательным суждением: р —> q; 1 р —> q; р —> ~\ q; Ч р —> 1 q. Например: Если состав преступления отсутствует (р), то уголовное дело дАа| не может быть возбуждено (1 q) ' Щ Состав преступления отсутствует (р) ^В Уголовное дело не может быть возбуждено f1 q) ^Щ Следствие условной посылки — отрицательное суждение, категорическая посылка (утвердительное суждение) утверждает истинность основания, заключение (отрицательное суждение) утверждает истинность следствия, т.е.
|