Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. . . .





Рис. 4.29. Рама под действием единичной обобщенной силы: а – соответствующей ; б – соответствующей

Будем искать первое обобщенное перемещение – вертикальное перемещение точки В. В соответствии с методом Максвелла – Мора для определения этого перемещения приложим в точке В единичную вертикальную сосредоточенную силу (рис. 4.29, а) и найдем изгибающий момент, вызванный этой нагрузкой (координаты , , должны отсчитываться так же, как при определении момента от заданной нагрузки):

участок 1: м;

;

участок 2: м;

;

участок 3: м;

.

Аналогично для определения второго обобщенного перемещения – угла поворота сечения А – приложим в точке А сосредоточенную пару сил, равную единице (рис. 4.29, б), и определим изгибающий момент от этой пары:

участок 1: м;

;

участок 2: м;

;

участок 3: м;

.

Вариант 1. Аналитическое интегрирование формулы

Максвелла – Мора

Подставим в формулу Максвелла – Мора (4.21) выражения для изгибающих моментов от заданной нагрузки, найденные ранее при определении внутренних усилий в рассматриваемой раме, умножим их на выражения для изгибающих моментов от единичных обобщенных сил на всех трех участках и выполним интегрирование. Тогда, учтя, что , проинтегрируем формулу (4.21):

250 кН·м3;

–63, 3 кН·м2.

В соответствии с правилом знаков метода Максвелла – Мора положительный знак вертикального перемещения говорит о том, что точка В перемещается по направлению обобщенной силы, то есть вверх. Сечение А поворачивается по часовой стрелке (в сторону, противоположную направлению единичной пары сил, так как знак угла поворота отрицательный).

Вариант 2. Интегрирование формулы Максвелла – Мора с помощью правила Верещагина

  Рис. 4.30. Эпюры моментов: а – от заданной нагрузки; б – от единичной обобщенной силы, соответствующей ; в – от единичной обобщенной силы, соответствующей  

Построим эпюры моментов от заданной нагрузки М и от единичных обобщенных сил, соответствующих искомым перемещениям, М 1 и М 2 (рис. 4.30). Для перемножения эпюр разобьем эпюру М на 4 простые фигуры: два треугольника w1 и w3, сегмент w2 и трапецию w4. Найдем ординаты под центрами тяжести этих фигур на эпюре М 1 (h1, h2 и h3 на рис. 4.30, б). Эпюру М на ригеле, имеющую форму трапеции w4 с основаниями разного знака, умножаем на трапецию эпюры М 1 по правилу трапеций (4.24). Согласно правилу Верещагина

кН·м3.

Аналогично находим угол поворота сечения А, перемножая эпюры М и М 2. Ординаты под центрами тяжести площадей w1, w2 и w3 показаны на рис. 4.30, в (h¢ 1, h¢ 2 и h¢ 3). Для перемножения трапеции w4 на прямоугольник эпюры М 2 нет необходимости пользоваться правилом трапеций, так как, где бы ни находился центр тяжести трапеции, значение h¢ 4 известно (ординаты на эпюре М 2 на этом участке постоянны).

  Рис. 4.31. Изогнутая ось рамы

кН·м2.

Результаты, полученные по двум вариантам использования формулы Максвелла – Мора, совпадают.

В заключение построим деформированную ось рамы так, чтобы она удовлетворяла эпюре изгибающих моментов и условиям закрепления рамы (рис. 4.31). На рис. 4.31 показаны полученные перемещения – , в соответствии с их направлениями. Точка перегиба (крестик) изогнутой оси ригеля имеет место в сечении, где меняет знак изгибающий момент. Углы рамы в процессе деформации не меняются.[11]







Дата добавления: 2014-11-12; просмотров: 769. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия