Студопедия — Основные определения. Статически неопределимые балки и рамы – конструкции, в которых уравнений статики недостаточно для определения опорных реакций и внутренних усилий
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные определения. Статически неопределимые балки и рамы – конструкции, в которых уравнений статики недостаточно для определения опорных реакций и внутренних усилий






Статически неопределимые балки и рамы – конструкции, в которых уравнений статики недостаточно для определения опорных реакций и внутренних усилий. Число связей, наложенных на статически неопределимую систему, больше того количества связей, которые обеспечивают геометрическую неизменяемость конструкции. Такими связями могут быть как опорные связи, так и стержни самой конструкции. Будем рассматривать балки и простые рамы, то есть такие конструкции, в которых связями, обеспечивающими геометрическую неизменяемость, являются опорные закрепления (опорные связи). Для обеспечения геометрической неизменяемости балки (рамы) в плоскости достаточно трех связей. Каждая связь запрещает какое-то перемещение. Шарнирно-подвижная опора запрещает перемещение по направлению, перпендикулярному плоскости опирания, и является одной связью. Шарнирно-неподвижная опора делает невозможными линейные перемещения по двум взаимно-перпендикулярным направлениям (вертикальному и горизонтальному) и соответствует двум связям, наложенным на конструкцию. Наконец, при наличии жесткого защемления на конце стержня становятся невозможными все перемещения: и вертикальное, и горизонтальное, и угол поворота, поэтому жесткое защемление представляет собой три связи, обеспечивающие геометрическую неизменяемость балки (рамы). Каждая дополнительная связь сверх трех для плоских систем превращает конструкцию в статически неопределимую. Такие дополнительные связи, которые не являются необходимыми для обеспечения геометрической неизменяемости конструкции, называются лишними.

  Рис. 4.32. К расчету статически неопределимой балки: а – заданная статически неопределимая балка; б – основная система и условие совместности деформаций (вариант 1); в – основная система и условие совместности деформаций (вариант 2)

Перед расчетом статически неопределимой конструкции необходимо сначала определить степень статической неопределимости рассматриваемойсистемы. Для балок и простых рам степень статической неопределимости равна числу лишних опорных связей. В каждой связи возникает опорная реакция, поэтому степень статической неопределимости можно найти, сосчитав разность между количеством неизвестных опорных реакций и числом независимых уравнений статики. Например, балка на рис. 4.32, а является один раз статически неопределимой, так как имеет 4 связи и 4 неизвестные опорные реакции, а количество независимых уравнений равновесия – 3. В раме, показанной на рис. 4.34, а, число наложенных связей и опорных реакций в них равно 5, и эта рама является дважды статически неопределимой (в ней две лишние связи). Если в один из стержней балки (рамы) врезан шарнир, то количество связей уменьшается на единицу, так как становится возможным взаимный поворот сечений, примыкающих к шарниру. Появляется дополнительное уравнение для определения опорных реакций: " изгибающий момент в шарнире равен нулю" или можно сказать по-другому: " сумма моментов всех сил, расположенных слева (или справа) от шарнира, равна нулю". Так, балка с врезанным в точке Е шарниром, показанная на рис. 4.33, а, является один раз статически неопределимой: от 5 опорных связей надо вычесть одну связь, связанную с наличием дополнительного шарнира в точке Е. Из четырех оставшихся связей одна является лишней. Можно сосчитать степень статической неопределимости этой балки и иначе: для определения пяти опорных реакций можно составить четыре уравнения статики (дополнительное уравнение " изгибающий момент в шарнире Е равен нулю"). Разность между числом реакций и количеством уравнений статики равна единице, то есть балка один раз статически неопределима.

  Рис. 4.33. К расчету статически неопределимой балки с шарниром: а – заданная статически неопределимая балка; б – основная система и условие совместности деформаций (вариант 1); в – основная система и условие совместности деформаций (вариант 2)  
Рис. 4.34. К расчету статически неопределимой рамы: а – заданная статически неопределимая рама; б – основная система и условия совместности деформаций (вариант 1); в – основная система и условия совместности деформаций (вариант 2)  

Рассмотрим один из способов расчета статически неопределимых балок и рам, а именно тот, который основан на том же принципе, что и расчет рассмотренных ранее статически неопределимых стержневых конструкций, работающих на растяжение-сжатие, кручение. Согласно этому способу для определения всех неизвестных к необходимым уравнениям равновесия добавляются уравнения совместности деформаций. При определении деформаций в уравнениях совместности деформаций используются физические уравнения (закон Гука). Из решения полученной системы уравнений можно найти все неизвестные реакции и определить внутренние усилия.

Для уменьшения в системе уравнений количества неизвестных, которые определяются в первую очередь, при расчете балок и рам чаще всего используют прием, связанный с выбором основной системы. Основная система – это статически определимая конструкция, полученная из заданной системы путем отбрасывания лишних связей. Реакции в отброшенных связях принято называть лишними неизвестными и обозначать Хi. Решение задачи (раскрытие статической неопределимости) сводится сначала к определению лишних неизвестных. Для их нахождения используются уравнения совместности деформаций – это условия кинематической эквивалентности основной и заданной систем, то есть равенства, приравнивающие нулю деформации по направлению отброшенных в основной системе связей. Количество уравнений совместности деформаций равно степени статической неопределимости. Зная величины лишних неизвестных, можно найти из уравнений равновесия остальные реакции. Обсудим подробно, как выбирать основную систему и записывать уравнения совместности деформаций.

На рис. 4.32, б, в – 4.34, б, в показаны по два варианта основных систем, выбранных для заданных систем, изображенных на рис. 4.32, а – 4.34, а. Балка на рис. 4.32, а один раз статически неопределима, для выбора основной системы необходимо отбросить одну связь. В первом варианте основной системы, изображенном на рис. 4.32, б, отброшена подвижная опора в точке В. Вертикальная реакция в отброшенной связи (лишняя неизвестная) обозначена буквой Х. Условие совместности деформаций для этого варианта основной системы: – это условие, приравнивающее нулю вертикальное перемещение (прогиб) в точке В балки, так как в заданной системе этот прогиб был невозможен. Во втором варианте на рис. 4.32, в жесткое защемление заменено шарнирно-неподвижной опорой. Лишней неизвестной является реактивный момент. Посколькув точке А стал возможным поворот сечения, то условие совместности деформаций полагает этот угол поворота равным нулю: .

Для выбора основной системы в дважды статически неопределимой раме на рис. 4.34, а требуется отбросить две связи. На рис. 4.34, б, в лишние неизвестные обозначены Х 1 и Х 2. В основной системе, показанной на рис. 4.34, б, стали возможны по сравнению с заданной системой горизонтальное перемещение в точке В и вертикальное перемещение в точке С, поэтому эти перемещения необходимо приравнять нулю. Это и есть условия совместности деформаций для варианта основной системы, показанной на рис. 4.34, б:

. (4.26)

Аналогично для основной системы, изображенной на рис. 4.34, в, условия совместности деформаций следующие: .

  Рис. 4.35. Взаимный угол поворота сечений около шарнира

Обсудим еще вариант 2 основной системы, показанный на рис. 4.33, в. В точке С сделан разрез стержня и между соседними сечениями вставлен шарнир. Лишней неизвестной в этом случае является изгибающий момент, возникающий в сечении С при отсутствии шарнира. Этот изгибающий момент изображен на рис. 4.33, в в виде двух одинаковых пар сил Х. Чтобы записать уравнение совместности деформаций, надо понять, чем отличается деформация заданной системы от деформации рассматриваемой основной системы. В заданной системе поворот соседних сечений, расположенных бесконечно близко слева и справа от точки С, возможен на один и тот же угол (сечения " склеены"). После разреза и добавления шарнира соседние сечения могут поворачиваться относительно друг друга на угол (рис. 4.35). Этот взаимный угол поворота соседних сечений в точке С мы и должны положить равным нулю при записи условия совместности деформаций: .

Для определения лишних неизвестных необходимо найти деформации в условиях совместности деформаций любым способом. Как правило, деформации находят методом Максвелла – Мора с использованием правила Верещагина. Удобно искать деформации отдельно от заданной нагрузки и от лишних неизвестных . Например, условия совместности деформаций (4.26) можно записать так:

; (4.27)

. (4.28)

Таким образом, для дважды статически неопределимой системы получаем систему уравнений из двух уравнений с двумя неизвестными, из которых и находим лишние неизвестные. После определения и находим остальные неизвестные реакции и строим окончательные эпюры внутренних усилий N, Q и М, используя уравнения статики.

Окончательную эпюру изгибающих моментов для один раз статически неопределимой системы можно проверить, перемножив ее с эпюрой моментов от единичной силы[12]. Результатом этого перемножения должен быть ноль, то есть

. (4.29)

Условие (4.29) – это условие совместности деформаций, подтверждающее равенство нулю деформаций по направлению лишней неизвестной.







Дата добавления: 2014-11-12; просмотров: 1357. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия