Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение уравнения Шредингера





 
 
Рис. 3
 
 

 
 


а) Частица в бесконечно глубокой одномерной потенциальной яме

Предположим, что частица может двигаться только вдоль оси х и ее движение ограничено непроницаемыми стенками в точках х = 0 и х = l.

Зависимость потенциальной энергии от координат имеет в этом случае следующий вид (рис. 3):

(32)

Поскольку волновая функция в данном случае зависит только от координаты х, уравнение Шредингера упрощается следующим образом:

. (33)

Рис. 4

Решая уравнение (6.33) с использованием стандартных условий, можно получить собственные значения энергии частицы:

(34)

Энергетический спектр, как следует из (34), является дискретным. При этом расстояние между соседними энергетическими уровнями не является постоянным, а увеличивается с увеличением номера энергетического уровня. Нормированные собственные функции частицы в этом случае имеют вид

Рис. 5
 
 

       
   
 

Графики этих функций показаны на рис. 4.

На рис. 5 дана зависимость плотности вероятности обнаружения частицы от координаты x на различных расстояниях от стенок ямы, равная Y× Y*.

 

 

б) Прохождение частиц через потенциальный барьер

 

 
 
Рис. 6
 
 

 
 


Пусть частица с энергией Е, движущаяся слева направо вдоль оси х, встречает на своем пути потенциальный барьер высотой U0 и шириной l (рис. 6). Из решения уравнения Шредингера в этом случае вытекает, что, во-первых, даже при Е> U0

имеется отличная от нуля вероятность того, что частица отразится от барьера. Во-вторых, при Е< U0 имеется отличная от нуля вероятность того, что частица проникнет «сквозь» барьер и окажется в области, где х > l. Вероятность прохождения частицы через барьер может быть названа коэффициентом прозрачности D. Расчеты показывают, что в данном случае

. (36)

 

Рис. 7

Для потенциального барьера произвольной формы (рис. 7) формула (36) должна быть заменена более общей формулой

, (37)

 

где U = U(x).

 

При преодолении потенциального барьера частица как бы проходит через «туннель» в этом барьере (рис. 7), в связи с чем это явление называют туннельным эффектом.

 

 







Дата добавления: 2014-11-12; просмотров: 584. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия