Глава 2.3. Технологические методы обеспечения заданного ресурса
Под заданным ресурсом (назначенным) понимается число наработки самолетом часов полета (посадок) до предельного состояния, оговоренного в технической документации. Величина назначенного ресурса в основном определяется усталостной прочностью конструкции самолета. Технология изготовления деталей и сборки узлов, агрегатов и систем самолетов оказывают важное, а часто и решающее влияние на усталостную прочность. Это влияние реализуется через изменение свойств и напряженно-деформированного состояния материала элементов конструкции, происходящее при их изготовлении, с помощью различных технологических процессов или при изменении режимов выполнения одного и того же технологического процесса. При изготовлении деталей с помощью разных способов резания в местах обработки образуется поверхностный слой, отличный по своим свойствам от основного металла. Глубина этого слоя зависит от свойств материала, вида и режимов обработки и колеблется от 0, 05 мм до 0, 6 мм, а иногда и больше (5-10_6 м и 6-10 6 м соответственно). Состояние поверхностного слоя характеризуется величиной и направлением неровностей, величиной и глубиной наклепа, величиной, знаком и глубиной залегания остаточных напряжений, химическим составом и структурой металла. Практика показывает, что при хорошем качестве основного металла (отсутствие пустот, внутренних трещин и др.) усталостное разрушение металлических конструкций начинается с поверхностных слоев металла. Поэтому состояние поверхностного слоя прямо влияет на усталостную прочность конструкции. Неровность поверхности деталей характеризуется волнистостью и шероховатостью. Волнистость препятствует плотному прилеганию соединяемых элементов конструкции друг к другу. В местах контакта происходит интенсивное истирание (износ) материала, вследствие чего именно с этих мест начинаются усталостные разрушения. Шероховатость характеризует микрогеометрию поверхности и образуется как результат взаимодействия инструмента и обрабатываемого материала. Величина шероховатости определяется видом (точение, фрезерование, шлифование и др.) и режимами (скорость, глубина резания и величина подачи) обработки и зависит существенно от жесткости системы станок — приспособление — инструмент —- деталь (СПИД). Особенно опасными с точки зрения усталостной прочности являются следы обработки, расположенные перпендикулярно направлению действия внешних усилий. В этом случае риска от обработки является концентратором напряжений, может стать местом возникновения трещины, приводящей к преждевременному разрушению конструкции. Повышение чистоты поверхности, как правило, существенно увеличивает усталостную прочность конструкции. Особенно тщательно следует обрабатывать поверхности деталей из высокопрочных материалов (В95, ЗОХГСНА и др.). Упрочнение (наклеп) поверхностного слоя является следствием совместного воздействия упругопластических деформаций и местного нагрева, возникающих в зоне резания. Механические характеристики (пределы упругости, текучести, прочности и твердости) наклепанного слоя выше, чем основного металла. Вместе с тем уменьшается его пластичность, повышается хрупкость. Меняются и физические свойства металла поверхностного слоя но сравнению с основной его массой: увеличивается электрическое сопротивление, уменьшается магнитная проницаемость. При обычных режимах резания глубина наклепа при обработке среднепрочных сталей и алюминиевых сплавов не превышает 0, 1.-.0, 2 мм. При большей глубине резания и больших подачах глубина наклепа достигает 0.5... 1.0 мм. Чрезмерная величина наклепа может привести к разрушению поверхностного слоя, которое может послужить местом возникновения усталостной трещины. Упрочнение поверхностного слоя, при котором сохраняются его пластические свойства, способствует повышению усталостной прочности конструкции. Остаточные напряжения, которые образуются в поверхностном слое, оказывают очень большое влияние на усталостную прочность. Так, при внешних растягивающих нагрузках остаточные напряжения сжатия снижают суммарные напряжения в конструкции и тем повышают ее усталостную прочность. Различают три рода остаточных напряжений: напряжения первого рода или микронапряжения, охватывающие области, соизмеримые по объему с размерами детали; напряжения второго рода или микронапряжения, распределяющиеся в объемах одного или нескольких зерен металла; напряжения третьего рода или субмикроскопические напряжения, проявляющие свои влияния в пределах атомной решетки. Наибольшее влияние на усталостную прочность оказывают напряжения первого рода. Вместе с тем выбор варианта и режимов обработки оказывает наибольшее влияние на характер и величину именно микронапряжений. На образование концентраторов напряжения существенно влияют режимы обработки и геометрии инструмента, а также условия охлаждения при резании. Величина остаточных напряжений часто соизмерима, а иногда и превосходит напряжения от внешних нагрузок, достигая напряжений предела прочности материала. Так при точении среднепрочной легированной стали они достигают 500...600 Па (50...60 кгс/мм2), алюминиевых сплавов — 150...200 Па (15...20 кгс/мм2). Существенное влияние на измерение ресурса оказывают также режимы и виды процессов термической обработки, образования защитных покрытий, выполнения соединений, сборки узлов и агрегатов.
|