Пример 1. Пусть имеются следующие данные о заработной плате рабочих сдельщиков: Заработная плата, тыс
Пусть имеются следующие данные о заработной плате рабочих сдельщиков:
По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются по нескольку раз. Так варианта Х1 встречается в совокупности 2 раза, а варианта Х3 – 16 раз. Число одинаковых значений признака в рядах распределения называются частотой (или весом) и обозначается символом f. Необходимо исчислить среднюю заработную плату одного рабочего ; среднюю заработанную плату одного рабочего , где А – заработная плата всех рабочих, N – число рабочих: Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих. Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. Рассмотрим расчет средней арифметической для таких рядов. Исчислим среднюю выработку продукции одним рабочим за смену. В данном ряду варианты осредняемого признака (продукции за смену) представлены не одним числом, а в виде интервала «от – до». Рабочие первой группы производят продукцию от 3 до 5 шт., рабочие второй группы от 5 до 7 шт., и т.д. Таким образом, каждая группа ряда распределения имеет нижнее и верхнее значение вариант, т.е. образовались закрытые интервалы.
Исчисление средней по сгруппированным данным проводиться по формуле средней арифметической взвешенной. . Чтобы применить эту формулу, необходимо варианты признака выразить одним числом (дискретным). За такое дискретное число принимается средняя арифметическая простая из верхнего и нижнего значений интервала. Так, для первой группы дискретная величина Х будет равна: и т.д. Дальнейший расчет производится обычным методом определения средней арифметической взвешенной: . Итак, все рабочие произвели 750 штук изделий за смену, а каждый в среднем произвел по 7, 5 штук. Преобразуем рассмотренный выше ряд распределения в ряд с открытыми интервалами. Допустим, что имеются следующие данные о производстве продукции за смену.
В таких рядах условно величина интервала первой группы принимается равной величине интервала последующей, а величина интервала последней группы величине интервала предыдущей. Дальнейший расчет аналогичен изложенному выше. Свойства средней арифметической значительно упрощает вычисления: · если увеличить или уменьшить все варианты осредняемого признака на какое-либо одно и то же число, то объем средней величины соответственно увеличится или уменьшится на это же число; · если увеличить или уменьшить все варианты осредняемого признака в какое-либо число раз, то объем средней величины соответственно увеличится или уменьшится в это же количество раз; · от увеличения или уменьшения веса каждого варианта признака в какое-либо число раз величина средней не изменится. Применение данного свойства с практической точки зрения удобно, если необходимо проанализировать совокупность со значительным количеством элементов, а частота элементов выражена многозначными числами. Если частоты элементов равны между собой, то среднюю можно рассчитать как невзвешенную; · как следствие предыдущего свойства можно сказать, что величина средней зависит не от абсолютных значений веса отдельных элементов, а от их доли в общей сумме весов, т.е. если не известны абсолютные выражения весов элементов, а известны пропорции между ними, то они могут использоваться для расчета средней; · средняя арифметическая совокупности, состоящей из их постоянных величин, равна этой постоянной: х = х при х = const.
Ø средняя гармоническая (простая и взвешенная); простая Взвешенная, где w — значение сводного, объемного, выступающего как признак-вес показателя: .
|