Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 1. Поясним правила сложения на примере





Поясним правила сложения на примере. Имеются следующие данные о производительности ткачей за час работы.

Исчислим:

1) групповые дисперсии;

2) среднюю из групповой дисперсии;

3) межгрупповую дисперсию;

4) общую дисперсию.

1. Для расчета групповых дисперсий исчислим среднее по каждой группе:

X1 = = 15 т.; X2 = = 21 т.

Подставив полученные значения в формулу, получим:

Таблица

Табельный номер ткача Изготовлено ткани трехстаночниками за 1 час (х) х –хi (х – хi)2 Табельный номер ткача Изготовлено ткани четырехстаночникамм за 1 час (х) х – хi (х – хi)2
    –2       –3  
    –1       –2  
               
            –1  
               
               
Итого              

 

2. Рассчитаем среднюю из групповых (частных) дисперсий:

3. Исчислим межгрупповую дисперсию. Для этого предварительно определим общую среднюю как среднюю взвешенную из групповых средних:

Затем рассчитаем межгрупповую дисперсию:

d2 = 18 м2.

4. Исчислим общую дисперсию по правилу сложения дисперсии:

2 = i + d = 3, 16 + 9 = 12, 16.

Проверим полученный результат, исчислив общую дисперсию обычным способом:

 

Расчет обычным способом привел к аналогичному результату, но оказался более трудоемким.

 

СВОЙСТВА ДИСПЕРСИИ

1) уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет;

2) уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину (А) дисперсии не изменяет;

3) уменьшение или увеличение каждого значения признака в какое-то число раз (К) соответственно уменьшает или увеличивает дисперсию в (К2) раз, а среднее квадратическое отклонение – в (К) раз;

4) дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности средней и произвольной величинами:

Если число А равно нулю, то приходим к следующему равенству:

т.е. дисперсия признака равна разности между квадратом значения признака и квадратом средней. Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другим.

 

Ø Среднее квадратическое отклонение (s) представля­ет собой корень квадратный, извлеченный из дисперсии. Различают простое и взвешенное среднее квадра­тическое отклонение.

Простое (невзвешенное) среднее квадратическое от­клонение определяется по формуле

 

Взвешенное среднее квадратическое отклонение опре­деляется по формуле







Дата добавления: 2014-11-12; просмотров: 560. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия