Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсия альтернативного признака





Выше был рассмотрен расчет показателей вариации для количественных признаков. Но наряду с вариацией количественных признаков может ставиться задача оценки вариация качественных признаков. При наличии двух взаимоисключающих вариантов значений признака говорят о наличии альтернативной изменчивости качественных признаков. Например, при изучении качества изготовленной продукции можно разделить ее на две группы: годную и бракованную. В таком случае будем иметь дело с альтернативным признаком. Можно считать, что эквивалентом качественного признака будет переменная, которая принимает значение 1 или 0, причем значение 1 она принимает в том случае, когда обследуемая единица обладает данным признаком, а значение 0, когда не обладает им.

Допустим, общее число единиц совокупности равно п. Число единиц, обладающих данным признаком - f, тогда число единиц, не обладающих данным признаком, будет равно п-f. Учитывая изложенное, построим ряд распределения по качественному признаку:

Значение переменной   Частота повторений  
  f n-f  
Итого   n

Средняя арифметическая такого ряда равна:

 

 

т.е. равна относительной частоте (частости), которую можно обозначить через р, тогда = р.

Таким образом, доля единиц, обладающих данным признаком, равна р; соответственно доля единиц, не обладающих данным признаком, равна q; р+q= 1. Тогда дисперсия альтернативного признака определяется по формуле

 

 

Среднее квадратическое отклонение альтернативного признака:

 

.

Ø Эмпирический коэффициент детерминации (ή 2), от­ражающий определенную изменением признака-фак­тора долю вариации результативного признака:

ή 2 = δ 2 / s2 общ

 

s2 общ — общая дисперсия

δ 2— межгрупповая дисперсия;

 

Ø Эмпирическое корреляционное отношение (ή), опре­деляющее тесноту связи между изменением признака-фактора и последующим изменением признака-резуль­тата, представляет собой корень из коэффициента детерминации

ή = √ (δ 2 / s2 общ)

Чем ближе к единице значение эмпирического корреля­ционного отношения, тем теснее связь между изменением признака-фактора и признака-результата.

Критерии согласия

Критерии согласия - особые статистические показатели, характе­ризующие соответствие эмпирического и теоретического распределений. Известны критерии согласия К. Пирсона, В.И. Романовского, А.Н. Кол­могорова, Б.С. Ястремского.







Дата добавления: 2014-11-12; просмотров: 873. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия