Досуговые практики студентов
Поэтому нередко, особенно в достаточно больших по размерам таблицах, в целях экономии места показывают только проценты. Частотные распределения в абсолютном выражении допускаются, однако при этом желательно приводить общее число наблюдений и тем самым давать возможность читателю в случае необходимости вычислить долю соответствующего частотного распределения. Пропорции и проценты сообщают нам информацию, которая оказывается более убедительной, значимой и легко запоминаемой, нежели частотное распределение в абсолютных значениях частот. Преимущество становится особенно бесспорным при необходимости последовательного сравнения достаточно длинных рядов распределений. Для данных номинального уровня измерение центральной тенденции производится с помощью определения моды. Модой, или модальной категорией, называется то значение переменной, которое встречается среди данных наиболее часто, то есть характерно для наибольшего количества респондентов в исследуемой социальной группе. В распределении, представленном в таблице 3.1, модальную категорию представляют собою студенты 4 курса обучения; в таблице 3.2 — это увлечение в свободное время компьютером и, в частности, Интернетом, таких студентов оказалось большинство среди респондентов. Частотное распределение раскрывает не только центральную тенденцию, но и дисперсию данных. Дисперсия характеризует разброс значений переменной. Для данных номинального уровня наибольший уровень дисперсии проявляется, когда наблюдения распределены поровну между категориями. Поэтому можно считать, что данные табл. 3.2 весьма дисперсны, поскольку имеется приблизительно одинаковое число студентов разных курсов обучения. Полное отсутствие дисперсии проявляется в тех случаях, когда все наблюдаемые значения переменной совершенно однородны, т. е. попадают в одну и ту же категорию. При проведении одномерного анализа могут обнаружиться такие характеристики данных, которые представляют собой существенные препятствия для дальнейшего анализа данных. Представьте, например, что вы намереваетесь изучить взаимосвязь между полом и родом занятий, и обнаружили, что в выборке опроса оказались одни лишь мужчины. Поскольку налицо отсутствие дисперсии (т. е. нет вариаций по одной из ключевых переменных—полу), каких-либо сравнений провести нельзя. Урок, который необходимо из этого усвоить, состоит в следующем: нет изменения — нет сравнения. А процедура сравнения являет собою, по своей сути, ядро анализа. При отсутствии изменений вы можете обнаружить какое-то интересное единообразие, но не сможете изучить связей между переменными, то есть выявить, что же происходит с одной из них, когда другая варьирует (изменяется). Самый простой одномерный анализ уже в ходе сбора данных (хотя бы беглый взгляд на частотное распределение) мог бы предостеречь вас от такой опасности. При анализе рядов распределений, когда мы выявляем центральную тенденцию, следует сразу обращать внимание на максимальные и минимальные значения изучаемой переменной. Другими словами, когда вы имеете дело с переменной, принимающей целый ряд значений, анализ следует начинать с акцента на самом большом и самом маленьком значении — это сразу дает вам представление о масштабах изменения рассматриваемой переменной и о дисперсии.
|