Проявления инициативы в учебном процессе
Здесь значения переменных — частоты причин пропуска занятий — соотнесены с ранговой шкалой степени инициативности студентов, значения которой меняются от категории «всегда» (которой присвоен ранг 3) до «никогда» (ранг 1). Учитывая, что общее число опрошенных (или число наблюдений) равно 283, то половина наблюдений составит 141. Это означает, что медиана для такой причины пропуска занятий как скука приходится на категорию с рангом 1 (никогда); для пропускающих по уважительным причинам и по собственной недисциплинированности — на категорию с рангом 3 (всегда); для тех, кто пользуется отсутствием контроля за посещаемостью — медиана приходится на категорию 2 (иногда). Отметим, что при использовании для измерений порядкового уровня (от большего к меньшему или наоборот) методы описательной статистики более информативны, нежели для измерений номинального уровня. Для измерений порядкового уровня центральную тенденцию частотного распределения можно оценить как с помощью моды, так и с помощью медианы, а для измерений номинального уровня подходит только мода. Для измерений порядкового уровня разброс частотного распределения можно выявить с помощью дисперсии и среднеквадратического отклонения, тогда как для измерений номинального уровня разброс можно только «ощутить», просматривая все категории. Такова одна из причин, по которым измерения высокого уровня часто оказываются предпочтительнее по сравнению с измерениями более низкого уровня.
Тема 5. Интервальная и пропорциональная шкала: способы измерения и анализа. Измерения интервального и пропорционального уровня редко анализируются с помощью прямого указания частот или процентных отношений. В отличие от номинальных или ранговых измерений, значения переменных, измеряемых с помощью интервальных шкал, изменяются непрерывно, они представляют собой численные величины, а не сами по себе категории, поэтому может реально существовать такое большое число различных наблюдаемых значений, что частоты и процентные отношения не в состоянии эффективно просуммировать данные. В самом деле, при измерении такой переменной как возраст, мы можем получить набор значений, ни одно из которых не будет повторять другого (если в нашем выборочном массиве не окажется какого-то количества респондентов, чьи даты рождения совпадают день в день). При измерении доходов также трудно рассчитывать, что суммы доходов различных респондентов или их семей будут совпадать до рублей и копеек. По этой причине значения таких переменных и размещают в тех или иных интервалах, размеры которых определяются исследовательским замыслом. Критериями центральной тенденции для интервального и пропорционального уровней измерений выступают мода, медиана и среднее арифметическое. Среднее арифметическое представляет собой сумму значений переменной, поделенную на число значений. Общая формула для ее вычисления алгебраически выглядит следующим образом: Х= ∑ Хi / N = (Х1 +Х2 + …Хi)/ N: (3.1) где Хi – числовое значение i-й позиции, N – Общее число наблюдений (объем выборки). Это так называемая простая средняя арифметическая. Она вычисляется в том случае, когда группировка осуществляется по признаку, не имеющему собственных вариаций. Рассмотрим вычисление средней арифметической величины на примере расчета средней посещаемости занятий в двух студенческих группах по данным проверок. Данные о посещаемости изложены в таблице 3.5. Сложив числа в правых колонках и разделив их на 4 (число проверок), мы получим, что средняя посещаемость занятий в группах составила: Таблица 3.5
|