Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные закономерности развития физических способностей 2 страница





Суть его состоит в том, что используемые педагогические воздействия (средства, методы и формы) соответствовали степени развития этих спо­собностей у индивида. Но это соответствие не должно быть абсолютным.


 

Зона опережающего воздействия методики

Время

МЕТОДИКИ

и

я


Рис. 8.3. Схема опережающего использования методики для постоянного развития..„.,..„, физических способностей,,„^ГК11,!,.шиш;


Чтобы постоянно развивать физические способности, внешние воздействия должны опережать внутреннее развитие конкретной способности. Если такого соответствия с некоторым опережением внешних воздействий над внутренними не будет, то в развитии способностей образуется остановка, застой («плато»). «Плато» в развитии способностей, как правило, есть результат шаблонной методики, нарушения принципа опережающего со-! ответствия, отставания использования методических приемов от развития способностей. Схематично идея опережающего использования различных методов для постоянного совершенствования физических способностей представлена на рис. 8.3.

8.3.7. Принцип соразмерности в развитии способностей

Предполагает соблюдение оптимального соотношения (пропорциональ ности) в уровне развития способностей у человека на каждом этапе возрас­тного развития. Лучшая соразмерность в развитии тех или иных способнос­тей обеспечивает более высокий уровень результатов в отдельных упражнениях,

В табл. 8.1 приведены показатели соразмерности в развитии скорост­ных возможностей и выносливости у олимпийского чемпиона в беге н коньках Эрика Хайдена (США) в различных зонах мощности — от субмак­симальной (бег на 500 м) до зоны большой мощности (бег на 10 000 м) Видно, что хотя и происходит снижение скорости от дистанции к дистан­ции, но степень ее уменьшения не такая значительная на смежных дистан­циях. Очевидно, это и позволило Э. Хайдену выиграть олимпийские ме­дали на всех четырех дистанциях.

Таблица 8.

Показатели соразмерности скоростных возможностей и выносливости при беге на коньках Э. Хайдена

 

Дистанции
      10 000
Скорость м/с % Скорость м/с % Скорость м/с % Скорость м/с %
12,4   11,7 94,3 10,5 84,6 10,2 82,2

Достигнуть необходимой соразмерности в развитии отдельных cnocoi ностей можно за счет рационального распределения различных среде подготовки в процессе занятий.

8.3.8. Принцип сопряженного воздействия

Основывается на органическом взаимодействии процессов развит! физических способностей и формирования двигательных навыков и на во можности его регулирования. Согласно этому принципу тренировочнь


воздействия должны соответствовать не только развитию необходимых спо­собностей, но и умению использовать их в двигательной структуре конк­ретного упражнения. Это достигается путем подбора специальных упраж­нений, направленных на одновременное развитие силы, выносливости и других способностей и на совершенствование отдельных элементов двига­тельного навыка или навыка в целом. В плавании для развития силы мышц рук в структуре гребка рекомендуется плавание на руках с буксировкой партнера или плавание на резиновом шнуре с преодолением его натяже­ния; в легкой атлетике — прыжковые упражнения, прыжки в длину и в высоту, выполняемые с утяжеленным поясом.

Глава 9

СИЛОВЫЕ СПОСОБНОСТИ И МЕТОДИКА ИХ РАЗВИТИЯ

9.1. Понятие о силовых способностях, их виды.

Факторы, определяющие уровень развития

и проявления силовых способностей

Выполнение любого движения или сохранение какой-либо позы тела человека обусловлено работой мышц. Величину развиваемого при этом усилия принято называть силой мышц.

МЫШЕЧНАЯ СИЛА как характеристика физических возможностей че­ловека— это способность преодолевать внешнее сопротивление или противо­действовать ему за счет мышечных напряжений.

Одним из наиболее существенных моментов, определяющих мышеч­ную силу, является режим работы мышц. В процессе выполнения двига­тельных действий мышцы могут проявлять силу:

При уменьшении своей длины (преодолевающий, т.е. миометри-
ческий режим, например, жим штанги лежа на горизонтальной скамейке
средним или широким хватом).

При ее удлинении (уступающий, т.е. плиометрический режим, на­
пример, приседание со штангой на плечах или груди).

Без изменения длины (удерживающий, т.е. изометрический режим,
например, удержание разведенных рук с гантелями в наклоне вперед в
течение 4—6 с).

При изменении и длины, и напряжения мышц (смешанный, т.е.
ауксотонический режим, например, подъем силой в упор на кольцах, опус­
кание в упор руки в стороны («крест») и удержание в «кресте»).

Первые два режима характерны для динамической, третий — для ста­тической, четвертый — для статодинамической работы мышц. Эти режи­мы работы мышц обозначают терминами «динамическая сила» и «стати­ческая сила». Наибольшие величины силы проявляются при уступающей работе мышц, иногда в 2 раза превосходящие изометрические показатели.

В любом режиме работы мышц сила может быть проявлена медленно
и быстро. Это характер их работы...,-,,,,.ч*лк< -■•;


Сила, проявляемая в уступающем режиме в разных движениях, зависит от скорости движения: чем больше скорость, тем больше и сила (рис. 9.1).

В изометрических условиях скорость равна нулю. Проявляемая при этом сила несколько меньше величины силы в плиометрическом режиме. Меньшую силу, чем в статическом и уступающем режимах, мышцы раз­вивают в условиях преодолевающего режима. С увеличением скорости дви­жений величины проявляемой силы уменьшаются.

В медленных движениях, т.е. когда скорость движения приближается к нулю, величины силы не отличаются существенно от показателей силы в изометрических условиях.

В соответствии с данными режимами и характером мышечной дея­тельности силовые способности человека подразделяются на два вида:

собственно силовые, которые проявляются в условиях статического
режима и медленных движений;

скоростно-силовые, проявляющиеся при выполнении быстрых дви­
жений преодолевающего и уступающего характера или при быстром пере­
ключении от уступающей к преодолевающей работе.

Рис. 9.1. Связь между силой и скоростью в преодолевающем и уступающих режимах (по Б. Абботу и др.)

Vi и V2 — скорость уменьшения и увеличения длины мышцы; Pi и Рг - соответствующие этим скоростям!

величины силы в преодолевающем (миометрическом) режиме; ft и h - соответствующие величины силы

в уступающем (плиометрическом) режиме; Ро - максимальная изометрическая сила

Собственно силовые способности человека могут проявляться при удер жании в течение определенного времени предельных отягощений с мак симальным напряжением мышц (статический характер работы) или npi перемещении предметов большой массы. В последнем случае скорост практически не имеет значения, а прилагаемые усилия достигают макси мальной величины (характер работы по спортивной терминологии мед ленный, динамический, «жимовой»). В соответствии с таким характе ром работы мышечная сила может быть статической и медленно динамической.

Скоростно-силовые способности проявляются в действиях, в которы наряду со значительной силой требуется и существенная скорость движе ния. При этом чем выше внешнее отягощение, тем больше действие apv


обретает силовой характер, чем меньше отягощение, тем больше действие становится скоростным.

Формы проявления скоростно-силовых способностей во многом зави­сят от характера напряжения мышц в том или ином движении, который выражается в различных движениях скоростью развития силового напря­жения, его величины и длительности.

Важной разновидностью скоростно-силовых способностей является «взрывная» сила — способность проявлять большие величины силы в наи­меньшее время. Она имеет существенное значение при старте в спринтер­ском беге, в прыжках, метаниях, ударных действиях в боксе и т.д.

Если зарегистрировать динамограмму отталкивания при прыжке вверх с места у квалифицированного спортсмена и новичка, то кривая взрывного усилия у мастера спорта показывает не только высокий уровень проявления силы, но и достижение ее за очень короткий промежуток времени (рис. 9.2).

Рис. 9.2. Проявления «взрывной» силы при прыжке вверх у мастера спорта (1) и начинающего спортсмена (2)

Видно, что у мастера спорта не только высокий уровень проявления силы, но и самое главное то, что максимальных величин силы он достига­ет за очень короткий промежуток времени.

Кривая взрывного усилия трехкомпонентна и качественно определяет­ся такими свойствами нервно-мышечного аппарата, как максимальная сила мышц, способность к быстрому проявлению внешнего усилия в начале рабочего напряжения мышц (стартовая сила), способность к наращива­нию рабочего усилия в процессе разгона перемещаемой массы — ускоряю­щая сила. Установлено, что эти свойства в той или иной степени присущи человеку любого возраста, пола, независимо от того, занимается он спортом или нет, и вида двигательной деятельности.

Уровень развития «взрывной» силы можно оценить с помощью скоро-стно-силового индекса, который вычисляется по следующей формуле:

J = F max / t max,

где: /— скоростно-силовой индекс;

.Fmax — максимальное значение силы, показанной в данном движении;

tmax — время достижения максимальной силы. „:.,<


Силу мгновенно проявить нельзя. Мышцам неооходими пН~..~.,...

проявить максимальную силу. Установлено, примерно через 0,3 с от нача­ла движения мышца проявляет силу, равную 90% от максимума. В то же время в спорте есть много движений, которые выполняются за время мень­шее, чем-0,3 с. К примеру, время отталкивания в беге у сильнейших сприн­теров длится 100—60 мс, в прыжках в длину 150 мс, в прыжках в высоту способом «фосбюри-флоп» — 180 мс, на лыжах с трамплина — 200—180 мс, финальное усилие в метании копья примерно 150 мс. В этих случа­ях человек не успевает проявить максимальную силу. Поэтому ведущим фактором силовых способностей будет не сама величина проявляемой силы, а скорость ее нарастания, т.е. градиент силы. Подтверждением этому слу­жит уменьшение времени, затрачиваемого на выполнение движений в ме­тании копья, толкании ядра, отталкивании в беге, прыжке и т.д. с рос­том квалификации спортсменов. О величине градиента силы можно судить по значениям тангенса угла наклона касательной к кривой F(t) на началь­ном участке (см. рис. 9.2). Его величина характеризует уровень развития стартовой силы.

Таким образом, в скоростно-силовых упражнениях повышение макси­мальной силы может не привести к улучшению результата. На спортивном жаргоне это означает, что человек «накачал» такую силу мышц, которую не успевает проявить в короткое время. Следовательно, человек, имею­щий меньшие силовые показатели, но высокие значения градиента, мо­жет выиграть у соперника с большими силовыми возможностями.

Рис. 9.3. Кривые нарастания силы у двух спортсменов

Из рис. 9.3 видно, что у спортсмена А — большая сила и низкий градиент силы. У спортсмена Б, наоборот, градиент силы высок, а мак­симальные силовые возможности небольшие. При большой длительности движения (Ь), когда оба спортсмена успевают проявить свою максималь­ную силу, преимущество оказывается у более сильного спортсмена А. Если же время выполнения движения очень коротко (меньше ti), то преимуще­ство будет на стороне спортсмена Б.

В результате современных исследований выделяется еще одно новое проявление силовых способностей, так называемая способность мышц на­капливать и использовать энергию упругой деформации («реактивная спо


собность»). Она характеризуется проявлением мощного усилия сразу же после интенсивного механического растяжения мышц, т.е. при быстром переключении их от уступающей работы к преодолевающей в условиях мак­симума развивающейся в этот момент динамической нагрузки (см. рис. 9.1). Предварительное растягивание, вызывающее упругую деформацию мышц, обеспечивает накопление в них определенного потенциала напря­жения (неметаболической энергии), который с началом сокращения мышц является существенной добавкой к силе их тяги, увеличивающей ее рабо­чий эффект.

Установлено, что чем резче (в оптимальных пределах) растяжение мышц в фазе амортизации, тем быстрее переключение от уступающей работы мышц к преодолевающей, тем выше мощность и скорость их сокращения. Сохранение упругой энергии растяжения для последующего сокращения мышц (рекуперация механической энергии) обеспечивает высокую эконо­мичность и результативность в беге, прыжках и других движениях. К при­меру, у гимнастов время перехода от уступающей работы к преодолеваю­щей имеет высокую связь с уровнем прыгучести. Отмечена высокая зависимость между реактивной способностью и результатом в тройном прыж­ке с разбега, в барьерном беге, в тяжелоатлетических упражнениях, а также между импульсом силы при отталкивании с подседом в прыжках на лыжах с трамплина.

В практике физического воспитания различают также абсолютную и относительную мышечную силу человека.

Абсолютная сила характеризует силовой потенциал человека и измеря­ется величиной максимально произвольного мышечного усилия в изомет­рическом режиме без ограничения времени или предельным весом подня­того груза.

Относительная сила оценивается отношением величины абсолютной силы к собственной массе тела, т.е. величиной силы, приходящейся на 1 кг собственного веса тела. Этот показатель удобен для сравнения уровня си­ловой подготовленности людей разного веса.

Для метателей диска, молота, толкателей ядра, штангистов тяжелых весовых категорий большее значение имеют показатели абсолютной силы. Это связано с тем, что между силой и массой собственного тела наблюда­ется определенная связь: люди большего веса могут поднять большее отя­гощение и, следовательно, проявить большую силу. Не случайно поэтому штангисты, борцы тяжелых весовых категорий стремятся увеличить свой вес и тем самым повысить свою абсолютную силу. Для большинства же физических упражнений неизмеримо важнее показатели не абсолютной, а относительной силы — в беге, прыжках, в длину и высоту, гребле, плава­нии, гимнастике и др. К примеру, выполнить упражнение «упор руки в стороны» на кольцах («крест») способен тот гимнаст, у которого относи­тельная сила приводящей мышцы руки к весу тела равна или больше еди­ницы.

Уровень развития и проявления силовых способностей зависит от мно­гих факторов. Прежде всего на них оказывает влияние величина физиологи­ческого поперечника мышц: чем он толще, тем при прочих равных условиях большее усилие могут развивать мышцы. При рабочей гипертрофии мышц в мышечных волокнах увеличивается количество и размеры миофибрилл и повышается концентрация саркоплазматических белков. При этом вне-


шний объем мышц может увеличиваться первых, повышается плотность укладки миофибрилл в мышечном волок­не, во-вторых, уменьшается толщина кожножирового слоя над тренируе­мыми мышцами.

Сила человека зависит от состава мышечных волокон. Различают «мед­ленные» и «быстрые» мышечные волокна. Первые развивают меньшую мышечную силу напряжения, причем со скоростью в три раза меньшей, чем «быстрые» волокна. Второй тип волокон осуществляет в основном быстрые и мощные сокращения. Силовая тренировка с большим весом отягощения и небольшим числом повторений мобилизует значительное число «быстрых» мышечных волокон, в то время как занятия с небольшим весом и большим количеством повторений активизируют как «быстрые», так и «медленные» волокна. В различных мышцах тела процент «медлен­ных» и «быстрых» волокон неодинаков, и очень сильно отличается у раз­ных людей. Стало быть, с генетической точки зрения они обладают раз­ными потенциальными возможностями к силовой работе.

На силу мышечного сокращения влияют эластичные свойства, вяз­кость, анатомическое строение, структура мышечных волокон и их хими­ческий состав.

Существенную роль в проявлении силовых возможностей человека иг­рает регуляция мышечных напряжений со стороны ЦНС. Величина мышеч­ной силы при этом связана:

с частотой эффекторных импульсаций, посылаемых к мышце от
мотонейтронов передних рогов спинного мозга;

степенью синхронизации (одновременности) сокращения отдель­
ных двигательных единиц;

порядком и количеством включенных в работу двигательных единиц.

Перечисленные факторы характеризуют внутримышечную координа­цию. Вместе с тем на проявление силовых способностей влияет также со­гласованность в работе мышц синергистов и антагонистов, осуществляю­щих движение в противоположных направлениях (межмышечная координация). Проявление силовых способностей тесно связано с эффек­тивностью энергообеспечения мышечной работы. Важную роль при этом играет скорость и мощность анаэробного ресинтеза АТФ, уровень содер­жания креатинфосфата, активность внутримышечных ферментов, а также содержание миоглобина и буферные возможности мышечной ткани.

Максимальная сила, которую может проявить человек, зависит и от механических особенностей движения. К ним относятся: исходное поло­жение (или поза), длина плеча рычага и изменение угла тяги мышц, свя­занного с изменением при движении длины и плеча силы, а следователь­но, и главного момента силы тяги; изменение функции мышцы в зависимости от исходного положения; состояние мышцы перед сокращением (предва­рительно растянутая мышца сокращается сильно и быстро) и т.д.

Сила увеличивается под влиянием предварительной разминки и соот­ветствующего повышения возбудимости ЦНС до оптимального уровня. И наоборот, чрезмерное возбуждение и утомление могут уменьшить макси­мальную силу мышц.

Силовые возможности зависят от возраста и пола занимающихся, а также от общего режима жизни, характера их двигательной активности и условий внешней среды. Наибольший естественный прирост показателей


абсолютной силы происходит у подростков и юношей в 13—14 и 16—18 лет, у девочек и девушек в 10—11 и 16—17 лет. Причем самыми высоки­ми темпами увеличиваются показатели силы крупных мышц разгибателей туловища и ног. Относительные же показатели силы особенно значи­тельными темпами возрастают у детей 9—11 и 16—17 лет. Показатели силы у мальчиков во всех возрастных группах выше, чем у девочек. Ин­дивидуальные темпы развития силы зависят от фактических сроков поло­вого созревания. Все это необходимо учитывать в методике силовой под­готовки.

В проявлении мышечной силы наблюдается известная суточная пе­риодика: ее показатели достигают максимальных величин между 15—16 часами. Отмечено, что в январе и феврале мышечная сила нарастает медленнее, чем в сентябре и октябре, что, по-видимому, объясняется большим потреблением осенью витаминов и действием ультрафиолето­вых лучей. Наилучшие условия для деятельности мышц — при темпера­туре +20° С.

9.2. Методика развития силовых способностей 9.2.1. Средства развития силовых способностей

При развитии силовых способностей пользуются упражнениями с по­вышенным сопротивлением — силовыми упражнениями. В зависимости от природы сопротивления они подразделяются на три группы:

Упражнения с внешним сопротивлением.

Упражнения с преодолением веса собственного тела.

Изометрические упражнения.

К упражнениям с внешним сопротивлением относятся:

упражнения с тяжестями (штангой, гантелями, набивными мя­
чами, гирями), в том числе и на тренажерах, которые удобны своей
универсальностью и избирательностью, упражнения с партнером;

упражнения с сопротивлением упругих предметов (резиновых
амортизаторов, жгутов, различных эспандеров, блочных устройств и
т.п.);

упражнения в преодолении сопротивления внешней среды — бег в
гору, по песку, снегу, воде, против ветра и т.п.

Упражнения с внешним сопротивлением являются одним из эффек­тивных средств развития силы. Смело подбирая их, правильно дозируя нагрузку, можно развить абсолютно все мышечные группы и мышцы. При выборе упражнений следует знать, что эффект совершенствования силы связан с режимом работы мышц. Наибольший эффект в развитии способ­ности мышц проявлять силу, можно достичь при уступающем и преодоле­вающем режимах.

Упражнения с преодолением веса собственного тела, применяют в тре­нировках людей различного возраста, пола, подготовленности и во всех формах занятий. Выделяют следующие их разновидности:

♦ гимнастические силовые упражнения, сгибание и разгибание рук в
упоре лежа, на брусьях и в висе, лазанье по канату, поднимание ног к
перекладине и др.)'>......


♦ легкоатлетические прыжковые упражнения (,однокр

ные прыжки на одной или двух ногах, прыжки через барьеры, прыжкиТГ «глубину» с возвышения с последующим отталкиванием вверх);

♦ упражнения в преодолении препятствий.

Изометрические упражнения, как никакие другие, способствуют одно­временному напряжению максимально возможного количества двигатель­ных единиц работающих мышц. Они подразделяются на:

упражнения в пассивном напряжении мышц (удержание груза на
предплечьях рук, плечах, спине и т.п.);

упражнения в активном напряжении мышц в течение определенно­
го времени и определенной позе (выпрямление полусогнутых ног, упира­
ясь плечами в закрепленную перекладину, попытка оторвать от пола штан­
гу чрезмерного веса и др.).

Выполняемые обычно при задержке дыхания, они приучают организм к работе в очень трудных бескислородных условиях. Занятия с использова­нием изометрических упражнений требует мало времени. Оборудование для их проведения весьма простое. С их помощью можно воздействовать на любые мышечные группы. Особенно ценны они в условиях гиподинамии у моряков-подводников, танкистов, операторов.

Помимо названных, можно выделить так называемые упражнения в самосопротивлении за счет волевых усилий (волевая гимнастика). Их суть состоит в напряженных движениях, когда тяговому усилию активной мы­шечной группы противостоит напряжение антагонистов. Эти упражнения прежде всего полезны при проведении оздоровительных занятий. Они по­зволяют за небольшое время создать значительную нагрузку, не требуя специального оборудования.

9.2.2. Методы развития силовых способностей

Направленное развитие силовых способностей происходит лишь тог­да, когда осуществляются максимальные мышечные напряжения. Поэто­му основная проблема в методике силовой подготовки состоит в том, что­бы обеспечить в процессе выполнения упражнений достаточно высокую степень мышечных напряжений. В методическом плане существуют раз­личные способы создания максимальных напряжений: поднимание пре­дельных отягощений небольшое число раз; поднимание непредельного веса максимальное число раз — «до отказа»; преодоление непредельных отяго­щений с максимальной скоростью; преодоление внешних сопротивлений при постоянной длине мышц; изменении ее тонуса или при постоянной скорости движения по всей амплитуде; стимулирование сокращения мышц в суставе за счет энергии падающего груза или веса собственного тела и др. В соответствии с указанными способами стимулирования мышечных напряжений выделяют следующие методы развития силовых способностей:

Метод максимальных усилий.

Метод повторных непредельных усилий.

Метод изометрических усилий.

Метод изокинетических усилий.

Метод динамических усилий.) -?•;.

«Ударный» метод..t\h. n

5—1460


Следует отметить, что подобные названия методов широко распрост­ранены в теории и практике силовой тренировки. Они хороши своей крат­костью. Однако в научном плане такое наименование методов развития силы не вполне корректно, поскольку, к примеру, методы максималь­ных, изометрических и изокинетических усилий также относятся к классу методов повторного упражнения. Динамическая форма сокращения мышц характерна не только для метода динамических усилий, но и для большин­ства методов.

Метод максимальных усилий. Он основан на использовании упраж­нений с субмаксимальными, максимальными и сверхмаксимальными отягощениями. Каждое упражнение выполняется в несколько подхо­дов. Количество повторений упражнений в одном подходе при преодо­лении предельных и сверхмаксимальных сопротивлений, т.е. когда вес отягощения равен 100% и более от максимального может составлять 1— 2, максимум 3 раза. Число подходов 2—3, паузы отдыха между повто­рениями в подходе 3—4 мин, а между подходами от 2 до 5 мин. При выполнении упражнений с околопредельными сопротивлениями (весом отягощения 90—95% от максимального) число возможных повторений движений в одном подходе 5—6, количество подходов 2—5. Интервалы отдыха между повторениями упражнений в каждом подходе — 4—6 мин и подходами 2—5 мин. Темп движений — произвольный, скорость — от малой до максимальной. В практике встречаются различные варианты этого метода, в основе которых лежат разные способы повышения отя­гощений в подходах.

Данный метод обеспечивает повышение максимальной динамической силы без существенного увеличения мышечной массы, воспитание умения развивать концентрированные усилия большой мощности. Рост силы при его использовании происходит за счет совершенствования внутри— и меж­мышечной координации и повышения мощности креатинфосфатного и гликолитического механизмов ресинтеза АТФ.

Следует иметь в виду, что предельные силовые нагрузки затрудняют самоконтроль за техникой действий, увеличивают риск травматизма и перенапряжений, особенно в детском возрасте и у начинающих. По­этому этот метод является основным, но не единственным в тренировке квалифицированных спортсменов. Он применяется не чаще 2—3 раз в неделю. Веса большие, чем предельный тренировочный, используются лишь изредка — один раз в 7—14 дней. Упражнения с весом свыше 100% от максимального выполняются, как правило, в уступающем ре­жиме с использованием помощи партнеров или специальных приспо­соблений.

До 16 лет не рекомендуется применять данный метод. Так, в сило­вой подготовке юношей допризывного и призывного возрастов метод максимальных усилий является дополнительным и его следует исполь­зовать после предварительной базовой силовой тренировки, а также под контролем преподавателя и с обеспечением страховки. Используется метод главным образом для текущей оценки уровня силовой подготов­ленности учащихся. Осуществляется эта оценка примерно один раз в месяц контрольными испытаниями в соответствующих упражнениях. Например, приседание со штангой на ногах, жим штанги лежа на гори­зонтальной скамье и др.


Метод повторных непредельных усилий. Предусматривает

ное преодоление непредельного внешнего сопротивления до значительно­го утомления или «до отказа».

В каждом подходе упражнение выполняется без пауз отдыха. В одном подходе может быть от 4 до 15—20 и более повторений упражнений. За одно занятие выполняется 2—6 серий. В серии — 2—4 подхода. Отдых между подходами 2—8 мин, между сериями — 3-5 мин. Величина внешних сопротивлений обычно находится в пределах 40—80% от максимальной в данном упражнении. Скорость движений невысокая. В зависимости от величины сопротивления предельно возможное число повторений может быть достигнуто на пятом, например, или тридцатом повторении. Разу­меется, механизм проявления и соответственно развития силовых способ­ностей при таком различии в числе повторений станет разным. При боль­шом отягощении и незначительном количестве повторений будет развиваться преимущественно максимальная сила или одновременно происходит рост силы и увеличение мышечной массы. И, наоборот, при значительном числе повторений и небольшом весе отягощений в значительной степени начинает возрастать силовая выносливость.

Тренировочный эффект при применении этого метода достигается к концу каждой серии повторений упражнения. В последних повторениях число работающих двигательных единиц возрастает до максимума, проис­ходит их синхронизация, увеличивается частота эффекторной импульса-ций, т.е. физиологическая картина становится сходной с той, которая существует при преодолении предельных усилий. Не случайно педагоги говорят своим ученикам: «Подними этот вес столько раз, сколько можешь и еще два-три раза».

Значительный объем мышечной работы с непредельными отягощени­ями активизирует обменно-трофические процессы в мышечной и других системах организма, вызывая необходимую гипертрофию мышц с увели­чением их физиологического поперечника, стимулируя тем самым разви­тие максимальной силы. Отметим тот факт, что сила сохраняется доль­ше, если одновременно с ее развитием увеличивается и мышечная масса.







Дата добавления: 2015-10-18; просмотров: 1318. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия