КАК ОТКРЫВАЛИ ТЕОРИЮ ГИПЕРПРОСТРАНСТВА
Теоретические основы физики гиперпространства были первоначально обоснованы в работе ряда учёных XIX века – немецкого математика Георга Римана, шотландских физиков Уильяма Томпсона и, как уже сказано выше, Джеймса Максвелла, а также английского математика Уильяма Гамильтона. Представляя свою теорию на лекции в Геттингенском университете 10 июня 1854 года, Георг Риман (1826-1866) дал ей весьма обманчивое наименование: «О гипотезах, лежащих в основаниях геометрии». Труд Римана представлял собой критику основных положений существовавшей многие столетия «евклидовой геометрии». То есть – упорядоченных прямолинейных законов трёхмерного мира. Риман предложил четырёхмерную реальность, в которой наша трёхмерная является только подгруппой. В четырёхмерной реальности геометрические правила, по мысли Римана, радикально отличаются от обычных «евклидовых». Риман предположил, что основные законы природы, известные для трёхмерного пространства, три основные силы которых – электростатика, магнетизм и тяготение – в четырёхмерном пространстве объединяются, а в нашем трёхмерном пространстве они выглядят иначе из-за «смятой геометрии». По сути, Риман доказывал, что тяготение, магнетизм и электричество – это одно и то же, это – энергии, идущие из более высоких измерений. Джеймс Клерк Максвелл (1831-1879), как и многие другие гиганты физики XIX века, воспринял идеи Римана весьма близко к сердцу. В 1873 году он смог объединить результаты двухвековых научных исследований электричества и магнетизма во всеобъемлющую электромагнитную теорию световых колебаний, которые переносятся в пространстве этой «несжимаемой и универсальной в контексте высокой напряжённости эфирной средой». Математической основой для объединения двух, пожалуй, самых загадочных сил в физике XIX века стали «квартенионы» (термин был введён в оборот в 1840-х годах математиком Уильямом Гамильтоном). По Максвеллу, действие на расстоянии возможно в эфире, который он определял как высокую пространственную размерность – то, что мы сегодня называем «гиперпространство». Важно понять: Максвелл не утверждал, что этот эфир существует как материальная субстанция. Он лишь делал предположение о существовании некой среды, которая мгновенно соединяет всё во Вселенной. Казалось бы, какое всё это имеет отношение к обнаруженным на Марсе артефактам в районе Сидонии? На первый взгляд, весьма далёкое. Максвелл (помимо своих заслуг в области физики, он также изобрёл технологию цветной фотографии и радикальный способ очистки одежды от жировых пятен), не чурался и поэтического творчества. Если прочесть строки из поэмы Максвелла 1887 года (в нерифмованном переводе), становится понятно, сколь глубоки были его познания: «Кубические поверхности! Тройки и девятки, вокруг него соберите ваши 27 линий – печать Соломона в трёх измерениях…». Это – чёткое описание «печати Соломона в трёх измерениях» является прямой отсылкой к геометрическим и математическим основам тетраэдральной геометрии марсианской Сидонии. Если взять базовую фигуру тетраэдра – равносторонний треугольник – и включить в него сверху (вершинами друг к другу) второй равносторонний треугольник, после чего описать вокруг получившейся фигуры окружность, получится знаменитая «звезда Давида», она же – «печать Соломона», о которой в своей поэме и говорит Максвелл. В этой фигуре вершины сдвоенного треугольника соприкасаются с окружностью в полюсах под углом 19,5 градуса (точнее, 19,47 градуса). А это, в свою очередь, напрямую связано с гиперпространственной квартенионной геометрией, физическое воздействие которой человечество сегодня повторно открывает во всей Солнечной системе. Отсылка к 27 линиям вполне ясно отправляет нас к двухмерному изображению двойного тетраэдра, заключённого в гиперкуб, что является базовой двухмерной формой шестигранника. К несчастью для науки, после смерти Максвелла два других «математических физика» XIX века – Оливер Хевисайд и Уильям Гиббс – свели его оригинальные уравнения к четырём простым. В Интернет-энциклопедии «Википедия» про Оливера Хевисайда (1850-1925), английского учёного-самоучку, инженера, математика и физика, прямо сказано, что он «переформулировал уравнения Максвелла в терминах трёхмерных векторов». Хевисайд открыто выражал неприятие кватернионов. Он так и не понял связи между критически скалярными (не имеющее направления измерение – например, скорость) и направленными (имеющими направление величинами – например, перемещение) компонентами. По некоторым свидетельствам, Хевисайд чувствовал, что использование Максвеллом кватернионов и описание с их помощью потенциала пространства было «мистическим и должно было быть удалено из теории». В итоге, Хевисайд это и сделал: пытаясь упростить оригинальную теорию Максвелла, он устранил из неё более 20 кватернионов! Таким образом, четыре оставшихся «классических» уравнения Максвелла, которые являются фундаментом электротехники и электромагнитной теории XIX века, в трудах самого Максвелла в подобном виде нигде не встречались. Конечным результатом стало то, что физика потеряла своё многообещающее гиперпространственное начало более ста лет назад и, «благодаря» Хевисайду, стала заниматься ограниченным, хотя и весьма сложным, подразделом теории электромагнитного поля. Подобного рода «коррекция» удалила из теории Максвелла ключевое различие между четырёхмерным «геометрическим потенциалом» и трёхмерным «векторным полем». Именно по этой причине многие современные физики (к примеру, знаменитый японец Мичио Каку), видимо, просто не понимают, что, фактически, оригинальные уравнения Максвелла были первой в истории теорией геометрического поля, выраженной в специальных терминах четырёхмерного пространства – на языке кватернионов. Читатель, который терпеливо прочитал вышеприведённые экскурсы, может резонно заметить: «Всё это, конечно, очень интересно, но как это работает на практике? Какой практический смысл всё это может иметь?». …С начала 1970-х годов ряд американских учёных вели активные работы в направлении изучения физики торсионных полей. Среди них были физик из Массачусетского технологического института, доктор Брюс Де Пальма (брат известного кинорежиссёра Брайана Де Пальмы) и подполковник Томас Бирден, инженер-атомщик и физик, работавший над оригинальной моделью Максвелла в программах разработки скалярного вооружения для армии США. Изучив подлинные работы Джеймса Максвелла, Бирден пришёл к заключению, что оригинальная теория Максвелла – самый настоящий «священный Грааль» физики, первая в истории науки удачная теория обобщения полей. А одним из практических изобретений Брюса Де Пальмы стала так называемая «N-машина»: высокоскоростной униполярный генератор, который может извлечь определённое количество электроэнергии из разрежённого воздуха (вакуума) без затрат на топливо. В 1998 году Брюс Де Пальма странным образом скоропостижно скончался… В середине 2000-х годов, когда Ричард Хогленд активно занимался изучением принципов гиперпространственной физики, один из коллег прислал ему тексты нескольких трудов почти не известных в США русских учёных. Когда Хогленд стал читать переводы этих статей (как современных, так и написанных в России десятилетия назад), он, по его собственному признанию, обнаружил совершенно отдельную базу данных, в которой содержатся буквально тысячи опубликованных научных трудов, полностью согласующихся с непостижимыми наблюдениями вокруг вращающихся масс, сделанных Брюсом Де Пальмой в 1970-х годах. По поводу открывшегося «клондайка» русских исследований Хогленд заметил: «Торсион для западной науки оставался почти неизвестным – и это неслучайно. До развала Советского Союза в 1991 году и внезапно хлынувшего в Интернет потока научной литературы о торсионе эта тема была буквально запрещённой для экспорта на Запад. Сегодня по теме торсионной физики опубликовано более 20 000 исследовательских работ, при этом более половины из них принадлежит русским учёным и учёным из стран бывшего Советского Союза». Говоря о разработках наших соотечественников по теме физики торсионных полей, Хогленд приводит слова инженера Пола Мюрада, который сейчас работает в одном из правительственных учреждений США, которое исследует возможности применения теории торсионного поля для движения в космосе: «Единственным полем, в котором возможна скорость, превышающая скорость света, по утверждениям некоторых русских физиков, является спин, или – торсионное поле. Торсионное поле отличается от трёх других полей (электростатического, магнитного и гравитационного), имеющих сферическую симметрию. Кручение (торсион) может быть право- или левосторонним. Оно основывается на цилиндрическом поле и может создаваться аккумулированием электроэнергии и вращением тела. При превышении определённой скорости поле расширится. Торсион может служить причиной возникновения и других феноменов, в том числе – увеличения границ. Очевидно, что кто-то захочет найти теорию, которая соотнесла бы все эти эффекты с результатом лучшего понимания гравитации. Самое похожее, что я нашёл (читая существующую русскую литературу), – это комментарий о том, что торсионное поле идентично поперечной спиновой поляризации физического вакуума, а гравитационное поле идентично его продольной спиновой поляризации. Таким образом, два этих поля (гравитация и торсион), вероятно, связаны и могут дать ключ – то есть, взаимосвязь, которую мы должны понять – к тому, чтобы узнать, как черпать безграничную энергию из физического вакуума или поля нулевой точки. Все эти вопросы являются интересными теоретически и определённо должны разрабатываться далее, если человечество действительно хочет осуществить свою мечту о космических путешествиях к дальним мирам». …В 1968 году в СССР впервые был опубликован роман советского писателя-фантаста, учёного-палеонтолога и мыслителя Ивана Ефремова (1908-1972) «Час Быка». Действие в романе разворачивается в далёком будущем. Космическая экспедиция землян отправляется на далёкую планету Торманс. Планетой в этой мрачной антиутопии управляют явно олигархические товарищи. Причём, из текста романа сложно сделать вывод, из какого именно общественного строя возникла олигархия Торманса: из переразвившегося социализма, или же – из деградировавшего капитализма. Но интересно другое: когда Ефремов описывает путешествие команды космического корабля землян сквозь миллионы световых лет, в технической части осуществления полёта явно просматривается использование принципов гиперпространственной физики.
|