Уравнения линии конечной длины
Постоянные и в полученных в предыдущей лекции формулах
определяются на основании граничных условий. Пусть для линии длиной l (см. рис. 1) заданы напряжение и ток в начале линии, т.е. при . Тогда из (5) и (6) получаем откуда Подставив найденные выражения и в (5) и (6), получим
Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке линии по их известным значениям в начале линии. Обычно в практических задачах бывают заданы напряжение и ток в конце линии. Для выражения напряжения и тока в линии через эти величины перепишем уравнения (5) и (6) в виде
Обозначив и , из уравнений (9) и (10) при получим откуда После подстановки найденных выражений и в (9) и (10) получаем уравнения, позволяющие определить ток и напряжение по их значениям в конце линии
Уравнения длинной линии как четырехполюсника В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями ; . Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ; и ; при этом условие выполняется. Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения.
|