Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Твердые растворы на основе чистых компонентов

Проводники.

Наиболее хорошими проводниками электричества являются металлы. Основные особенности проводников состоят в следующем:

1) В проводниках имеются свободные заряды, т.е. индуцированные заряды разделяются (могут быть разделены механически); в металлах свободными зарядами являются электроны.

2) В равновесном состоянии электрическое поле внутри проводника, находящегося во внешнем поле или заряженного до некоторого значения , равно нулю ( ).

В противном случае на электрические заряды в проводнике будет действовать со стороны поля сила, приводящая их в движение и вызывающая перераспределение зарядов. В электроста­тическом состоянии движение зарядов отсутствует, откуда следует, что электрическое поле внутри проводящего вещества должно быть равно нулю. Отсюда неизбежно получаем, что в стационарном состоянии в проводнике

 

и, следовательно, объемная плотность избыточных (нескомпенсированных) зарядов внутри однородного проводника также равна нулю.

Заметим, что мы имеем в виду поле, усредненное по объему, который велик по сравнению с характерными объёмами атомов.

3) Избыточный электрический заряд может располагаться только на поверхности проводника с некоторой плотностью , вообще говоря, различной в разных точках его поверхности. Избыточный поверхностный заряд находится в очень тонком слое у поверхности проводника (толщина слоя порядка одного – двух межатомных расстояний).

4) Отсутствие поля внутри проводника ( ), означает, что потенциал в объеме проводника одинаков во всех точках: , т.е. проводник представляет собой эквипотенциальную область пространства, а его поверхность – эквипотенциальную поверхность.

  5) Напряженность поля в любой точке поверхности проводника направлена перпендикулярно к ней (иначе на поверхности проводника будут происходить движение зарядов до тех пор, пока не обратится в нуль тангенциальная составляющая поля ), т.е. .
 

Т.о., в состоянии равновесия тангенциальная составляющая поля внутри и вне проводника должна быть равна нулю.

6) Поле вблизи поверхности проводника. Пусть интересующий нас участок поверхности проводника граничит с вакуумом ( ).

Линии вектора перпендикулярны поверхности проводника, поэтому в качестве замкнутой поверхности возьмем небольшой цилиндр, расположив его, как показано на рисунке. По теореме Гаусса для выбранной цилиндрической поверхности, вырезающей на поверхности проводника
 

площадку с плотностью стороннего заряда , можем записать

 

Т.к. через нижнее основание и боковую поверхность поток вектора (из-за внутри проводника и ) равен нулю. То

 

или

 

Если внутри проводника имеется полость, то поле внутри нее также равно нулю. На этой основе широко приме­няется метод защиты чувствительных при­боров от внешних электрических полей - так называемая электро­ста­тическая защита (чувстви­тельные приборы заклю­чают в замкнутые метал­лические корпуса, которые соединяют с землей).

 

 

Емкость проводников.

Если проводнику сообщить заряд , то он распределяется по поверхности проводника единственным способом, причем так, чтобы поле внутри проводника будет равно нулю. Такое распределение будет сохраняться, когда проводник уединенный, т.е. когда по близости нет других тел, заряды, заряды которых или поляризация могут вызвать перераспределение зарядов на интересующем нас проводнике.

Итак, рассмотрим уединенный заряженный проводник. Если увеличить его заряд на , то он распределится аналогичным образом, лишь возрастет напряженность поля вблизи поверхности и потенциал проводника. Опыт показывает, что между зарядом проводника и его потенциалом существует прямая пропорциональность (потенциал на бесконечности считаем равным нулю):

 

Коэффициент пропорциональности называют электроемкостью или емкостью уединенного проводника.

Емкость зависит от размеров и формы проводника. Она численно равна заряду, сообщение которого проводнику повышает его потенциал на единицу.

Пример: Пусть проводящий уединенный шар имеет радиус . Найдем потенциал этого шара

 

или

 

Тогда емкость проводящего шара равна

.  

Примечание: в системе СИ имеем и единица емкости 1 Фарада:

.

Фарада - очень большая величина, так - это емкость шара радиусом 9×109 м, что в 1500 раз больше радиуса Земли (емкость Земли ). Поэтому для практических нужд вводят обычно кратные величины: .

 

Конденсаторы.

Наличие вблизи проводника других тел изменяет его электрическую емкость, т.к. потенциал проводника зависит и от электрических полей, создаваемых зарядами, наведенными в окружающих телах вследствие электростатической индукции. При приближении к заряженному проводнику других тел в них будет происходить перераспределение зарядов, причем так, что ближе окажутся заряды противоположные по знаку заряду рассматриваемого проводника. Поэтому потенциал проводника, являющийся алгебраической суммой потенциалов собственных и индуцированных на других телах зарядов, уменьшится, а, значит, его емкость увеличится.

Конденсатором называют систему, состоящую из двух проводников, отделенных слоем диэлектрика, расстояние между которыми много меньше их линейных размеров.

Чтобы внешние поля не оказывали заметного влияния на емкость конденсатора, нужно, чтобы поле, создаваемое накапливающимися на обкладках зарядами, было практически полностью сосредоточено внутри конденсатора. В реальном конденсаторе это условие выполняется приближенно, но с достаточно хорошей точностью.

Заряд конденсатора (заряд, расположенный на одной из его обкладок), связан с разностью потенциалов между обкладками конденсатора через коэффициент пропорциональности - емкость конденсатора:

 

Емкость зависит от конструкции конденсатора. Наиболее простыми и часто используемыми являются плоский, цилиндрический и сферический конденсаторы. Рассмотрим их устройство и характеристики.

1). Плоский конденсатор: две параллельные проводящие пластинки, между которыми расположен тонкий диэлектрик с диэлектрической проницаемостью . Расстояние между пластинами равно , площадь пластин равна . Напряжение на конденсаторе определяется как

 

Электрическое поле внутри конденсатора – однородное. Мы рассматриваем его как суперпозицию полей двух бесконечных разноименно заряженных плоскостей:

.

Отсюда находим связь между напряжением на конденсаторе и его электрическим полем:

 

и емкость плоского конденсатора:

.

 

2). Сферический конденсатор:

  две проводящие концентрические сферы, радиусами и (обкладки конденсатора), разделенные тонким слоем диэлектрика с диэлектрической проницаемостью . Разность потенциалов определяется из соотношения
,  

откуда находим емкость сферического конденсатора

 

 

3). Цилиндрический конденсатор: обкладками конденсатора служат два проводящих коаксиальных цилиндра радиусами и , между которыми расположен тонкий диэлектрик с диэлектрической проницаемостью . Длина цилиндров равна (при этом достаточно велико: ). Поле внутри цилиндрического конденсатора (между цилиндрами) легко найти, используя теорему Гаусса :

,

где заряд, приходящийся на единицу длины одного из цилиндров. Тогда разность потенциалов между обкладками цилиндрического конденсатора:

.  

Следовательно, емкость цилиндрического конденсатора:

.

 

Параллельное и последовательное соединение конденсаторов (СРС).

Твердые растворы на основе чистых компонентов

Они бывают двух типов:

– растворы замещения (рисунок 6);

– растворы внедрения (рисунок 7);


своему составу сплав отстоит от чистых компонентов. Остаточное сопротивление достигает своего максимального значения при равном содержании каждого компонента (xА = xВ = 0,5). Закон Нордгейма довольно точно описывает изменение удельного сопротивления непрерывных твердых растворов в том случае, если при изменении состава не наблюдается фазовых переходов и ни один из их компонентов не принадлежит к числу переходных или редкоземельных элементов. Примером подобных систем могут служить сплавы Au – Ag, Cu – Ag, Cu – Au, W – Mo и др. Несколько иначе ведут себя твердые растворы, компонентами которых являются металлы переходной группы (рисунок 10). В этом случае при высоких концентрациях компонентов наблюдается существенно большая величина остаточного сопротивления, что связано с переходом части валентных электронов на внутренние незаполненные d – оболочки атомов переходных металлов. Кроме того, в подобных сплавах максимальное r часто соответствует концентрациям, отличным от 50%.   Чем больше удельное сопротивление сплава, тем меньше его ar. Это вытекает из того, что в твердых растворах rост, как правило, существенно превышает rт и не зависит от температуры. В соответствии с определением температурного коэффициента . (18) Учитывая, что ar чистых металлов незначительно отличаются друг от друга, выражение (18) легко преобразовать к следующему виду: . (19)
8.2 Твердые растворы на основе химических соединений Образуются из компонентов с большими различиями в электронном строении. При этом сохраняется решетка соединения Аn Bm, но избыточное количество атомов, например B, растворяется, заменяя в решетке атомы А. Если третий элемент С есть, то атомы С заменяют атомы А и В в узлах решетки. Могут существовать растворы вычитания, если образуются пустые места в узлах решетки.   8.3 Упорядоченные твердые растворы В 1914 году их обнаружил Н.С. Курнаков. Происходит изменение r сплавов, например, Cu и Au благодаря перераспределению атомов внутри решетки. При упорядочивании изменяется период решетки, но не ее тип. Такие растворы являются промежуточными между химическим соединением и твердым раствором. Упорядоченные твердые растворы образуются при сравнительно низких температурах. Отношение компонент в сплаве тут целое число: 1:1; 1:2; 1:3, . . .   8.4. Твердые растворы с неограниченной растворимостью Твердые растворы с неограниченной растворимостью образуются при условиях: – одинаковые типы кристаллических решеток у А и В; – различие в атомных размерах £8 – 15%; – близкое строение валентной оболочки электронов в атоме. Например, Au + Agс ГЦК решеткой или Mo + W.   9. Температурная зависимость удельного сопротивления металлических проводников В идеальном кристалле длина свободного пробега электронов равна бесконечности, а сопротивление электрическому току равно нулю. Подтверждением данного положения является тот факт, что сопротивление чистых отожженных металлов стремится к нулю, когда температура приближается к абсолютному нулю. Свойство электрона свободно перемещаться в идеальной кристаллической решетке не имеет аналога в классической механике. Рассеяние, приводящее к появлению сопротивления, возникает в тех случаях, когда в решетке имеются дефекты строения.


оценки содержания примесей измеряют отношение удельных сопротивлений при комнатной температуре и температуре жидкого гелия: Чем чище металл, тем больше значение b. В наиболее чистых металлах, получаемых в настоящее время (со степенью чистоты 99,99999%), параметр b имеет значение порядка 105. Большое влияние на удельное сопротивление металлов и сплавов оказывают искажения, вызываемые напряженным состоянием. Однако степень этого влияния определяется характером напряжений. Например, при всестороннем сжатии у большинства металлов удельное сопротивление уменьшается. Это объясняется сближением атомов и уменьшением амплитуды тепловых колебаний решетки. Пластическая деформация и наклеп всегда повышают удельное сопротивление металлов и сплавов. Однако это повышение даже при значительном наклепе чистых металлов составляет единицы процентов. Термическая закалка приводит к повышению r, что связано с искажениями решетки, появлением внутренних напряжений. При рекристаллизации путем термической обработки (отжига) удельное сопротивление может быть снижено до первоначального значения, поскольку происходит "залечивание" дефектов и снятие внутренних напряжений.   11. Электрические свойства металлических сплавов Статистическое распределение атомов разных сортов по узлам кристаллической решетки вызывает значительные флуктуации периодического потенциального поля кристалла, что в свою очередь, приводит к сильному рассеянию электронов. Как и в случае металлов, полное сопротивление сплава можно выразить в виде суммы двух слагаемых: , (16) где rт – сопротивление, обусловленное рассеянием электронов на тепловых колебаниях решетки; rост – добавочное (остаточное) сопротивление, связанное с рассеянием электронов на неоднородностях структуры сплава. Специфика твердых растворов состоит в том, что rост может существенно (во много раз) превышать тепловую составляющую. Для многих двухкомпонентных сплавов изменение rост в зависимости от состава хорошо описывается параболической зависимостью вида , (17) где C – константа, зависящая от природы сплава; xA и xB – атомные доли компонентов в сплаве. Соотношение (17) получило название закона Нордгейма. Из него следует, что в бинарных твердых растворах А – В остаточное сопротивление увеличивается как при добавлении атомов В к металлу А (твердый раствор a), так и при добавлении атомов А к металлу B (твердый раствор b), причем это изменение характеризуется симметричной кривой. В непрерывном ряду твердых растворов удельное сопротивление тем больше, чем дальше по
Известно, что эффективное рассеяние волн происходит, когда размер рассеивающих центров (дефектов) превышает четверть длины волны. В металлах энергия электронов проводимости составляет 3 – 15 эВ. Этой энергии соответствует длина волны 3 – 70 . Поэтому любые микронеоднородности структуры препятствуют распространению электронных волн, вызывают рост удельного сопротивления материала. В чистых металлах совершенной структуры единственной причиной, ограничивающей длину свободного пробега электронов, является тепловое колебание атомов в узлах кристаллической решетки. Электрическое сопротивление металла, обусловленное тепловым фактором, обозначим через rт. Совершенно очевидно, что с ростом температуры увеличиваются амплитуды тепловых колебаний атомов и связанные с ними флуктуации периодического поля решетки. А это, в свою очередь, усиливает рассеяние электронов и вызывает возрастание удельного сопротивления. Чтобы качественно установить характер температурной зависимости удельного сопротивления, воспользуемся следующей упрощенной моделью. Интенсивность рассеяния прямо пропорциональна поперечному сечению сферического объема, который занимает колеблющийся атом, а площадь поперечного сечения пропорциональна квадрату амплитуды тепловых колебаний. Потенциальная энергия атома, отклоненного на Da от узла решетки, определяется выражением , (9) где kупр – коэффициент упругой связи, которая стремится вернуть атом в положение равновесия. Согласно классической статистике средняя энергия одномерного гармонического осциллятора (колеблющегося атома) равна . На этом основании запишем следующее равенство: . Легко доказать, что длина свободного пробега электронов у N атомов обратно пропорциональна температуре: . (10) Необходимо отметить, что полученное отношение не выполняется при низких температурах. Дело в том, что с понижением температуры могут уменьшаться не только амплитуды тепловых колебаний атомов, но и частоты колебаний. Поэтому в области низких температур рассеяние электронов тепловыми колебаниями узлов решетки становится неэффективным. Взаимодействие электрона с колеблющимся атомом лишь незначительно изменяет импульс электрона. В теории колебаний атомов решетки температуру оценивают относительно некоторой характеристической температуры, которую называют температурой Дебая QD. Температура Дебая определяет максимальную частоту тепловых колебаний, которые могут возбуждаться в кристалле:


выше, чем сильнее различаются валентности примесных атомов и металла – растворителя (основы). Для одновалентных металлов изменение остаточного сопротивления на 1 ат.% примеси ("примесный" коэффициент электросопротивления) подчиняется правилу Линде: , (15) где a и b – константы, зависящие от природы металла и периода, который занимает в Периодической системе элементов примесный атом; DZ – разность валентностей металла – растворителя и примесного атома. Из (15) следует, что влияние металлоидных примесей на снижение проводимости сказывается сильнее, чем влияние примесей металлических элементов. Помимо примесей некоторый вклад в остаточное сопротивление, вносят собственные дефекты структуры – вакансии, атомы внедрения, дислокации, границы зерен. Концентрация точечных дефектов экспоненциально возрастает с температурой и может достигать высоких значений вблизи точки плавления. Кроме того, вакансии и междуузельные атомы легко возникают в материале при его облучении частицами высокой энергии, например, нейтронами из реактора или ионами из ускорителя. По измеренному значению сопротивления можно судить о степени радиационного повреждения решетки. Таким же образом можно проследить и за восстановлением (отжигом) облученного образца. Изменение остаточного сопротивления меди на 1 ат.% точечных дефек тов составляет: в случае вакансий 0,010 – 0,015 мкОм × Ом; в случае атомов внедрения 0,005 – 0,010 мкОм × Ом. Остаточное сопротивление представляет собой весьма чувствительную характеристику химической чистоты и структурного совершенства металлов. На практике при работе с металлами особо высокой чистоты для
. Эта температура зависит от сил связи между узлами кристаллической решетки и является важным параметром твердого тела. При T > QD удельное сопротивление металлов изменяется линейно с температурой (рисунок 8, участок III). Как показывает эксперимент, линейная аппроксимация температурной зависимости rт (T) справедлива и до температур порядка (2/3)QD, где ошибка не превышает 10%. Для большинства металлов характеристическая температура Дебая не превышает 400 – 450 К. Поэтому линейное приближение обычно справедливо при температурах от комнатной и выше. В низкотемпературной области (T<<QD), где спад удельного сопротивления обусловлен постепенным исключением все новых и новых частот тепловых колебаний (фононов), теория предсказывает степенную зависимость rт~T5. В физике это соотношение известно как закон Блоха – Грюнайзена. Температурный интервал, в котором наблюдается резкая степенная зависимость rт(T), обычно бывает довольно небольшим, причем экспериментальные значения показателя степени лежат в пределах от 4 до 6.   В узкой области I, составляющей несколько кельвинов, у ряда металлов может наступить состояние сверхпроводимости (подробнее ранее) и на рисунке виден скачок удельного сопротивления при температуре Tсв. У чистых металлов совершенной структуры при стремлении температуры к ОК удельное сопротивление также стремится к 0 (пунктирная кривая), а длина свободного пробега устремляется в бесконечность. Даже при обычных температурах длина свободного пробега электронов в металлах в сотни раз превышает расстояние между атомами (таблица 2). Таблица 2 – Средняя длина свободного пробега электронов при 0°С для ряда металлов (lср × 1010,м)
Li Cu
 


               
 
Na Ag
K Au
Ni Fe

В пределах переходной области II происходит быстрый рост удельного сопротивления r(T), где n может быть до 5 и постепенно убывает с ростом температуры ~ до 1 при T = QD.

Линейный участок (область III) в температурной зависимости r(T) у большинства металлов простирается до температур, близких к точке плавления. Исключение из этого правила составляют ферромагнитные металлы, в которых имеет место дополнительное рассеяние электронов на нарушениях спинового порядка. Вблизи точки плавления, т.е. в области IV, начало которой отмечено на рисунке 7 температурой Tнл, и в обычных металлах может наблюдаться некоторое отступление от линейной зависимости.

При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления приблизительно в 1,5 – 2 раза, хотя имеются и необычные случаи: у веществ со сложной кристаллической структурой, подобных висмуту и галлию, плавление сопровождается уменьшением r.

Эксперимент выявляет следующую закономерность: если плавление металла сопровождается увеличением объема, то удельное сопротивление скачкообразно возрастает; у металлов с противоположным изменением объема происходит понижение r.

При плавлении не происходит существенного изменения ни в числе свободных электронов, ни в характере их взаимодействия. Решающее влияние на изменение r оказывают процессы разупорядочения, нарушение дальнейшего порядка в расположении атомов. Аномалии, наблюдаемые в поведении некоторых металлов (Ga, Bi), могут быть объяснены увеличением модуля сжижаемости при плавлении этих веществ, что должно сопровождаться уменьшением амплитуды тепловых колебаний атомов.

Относительное изменение удельного сопротивления при изменении температуры на один кельвин (градус) называют температурным коэффициентом удельного сопротивления:

. (11)

Положительный знак ar соответствует случаю, когда удельное сопротивление в окрестности данной точки возрастает при повышении температуры. Величина ar также является функцией температуры. В области линейной зависимости r(Т) справедливо выражение:

, (12)

где r0 и ar – удельное сопротивление и температурный коэффициент удельного сопротивления, отнесенные к началу температурного диапазона, т.е. температуре T0; r – удельное сопротивление при температуре T.

Связь между температурными коэффициентами удельного сопротивления и сопротивления такова:

 
, (13) где ar – температурный коэффициент сопротивления данного резистора; al – температурный коэффициент расширения материала резистивного элемента. У чистых металлов ar >> al, поэтому у них ar » aR. Однако для термостабильных металлических сплавов такое приближение оказывается несправедливым.   10. Влияние примесей и других структурных дефектов на удельное сопротивление металлов Как отмечалось, причинами рассеяния электронных волн в металле являются не только тепловые колебания узлов решетки, но и статические дефекты структуры, которые также нарушают периодичность потенциального поля кристалла. Рассеяние на статических дефектах структуры не зависит от температуры. Поэтому по мере приближения температуры к абсолютному нулю сопротивление реальных металлов стремится к некоторому постоянному значению, называемому остаточным сопротивлением (см. рисунок 8). Отсюда вытекает правило Маттиссена об аддитивности удельного сопротивления: , (14) т.е. полное удельное сопротивление металла есть сумма удельного сопротивления, обусловленного рассеянием электронов на тепловых колебаниях узлов кристаллической решетки, и остаточного удельного сопротивления, обусловленного рассеянием электронов на статических дефектов структуры. Исключение из этого правила составляют сверхпроводящие металлы, в которых сопротивление исчезает ниже некоторой критической температуры. Наиболее существенный вклад в остаточное сопротивление вносит рассеяние на примесях, которые всегда присутствуют в реальном проводнике либо в виде загрязнения, либо в виде легирующего (т.е. преднамеренно вводимого) элемента. Следует заметить, что любая примесная добавка приводит к повышению r, даже если она обладает повышенной проводимостью по сравнению с основным металлом. Так, введение в медный проводник 0,01 ат. доли примеси серебра вызывает увеличение удельного сопротивления меди на 0,002мкОм ×м. Экспериментально установлено, что при малом содержании примесей удельное сопротивление возрастает пропорционально концентрации примесных атомов. Иллюстрацией правила Маттиссена является рисунок 9, из которого видно, что температурные зависимости удельного сопротивления чистой меди и ее сплавов с малым количеством (приблизительно до 4 ат. %) индия, сурьмы, олова, мышьяка взаимно параллельны. Различные примеси по-разному влияют на остаточное сопротивление металлических проводников. Эффективность примесного рассеяния определяется возмущающим потенциалом в решетке, значение которого тем
 
   
 


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой


<== предыдущая лекция | следующая лекция ==>
Проводники в электрическом поле. | Лабораторная работа №1. – растворы замещения (рисунок 6);

Дата добавления: 2015-10-18; просмотров: 417. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.025 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7