Студопедия — Взаимодействие озона с органическими веществами биогенной и антропогенной природы, механизм и кинетика озонолиза.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взаимодействие озона с органическими веществами биогенной и антропогенной природы, механизм и кинетика озонолиза.






С термодинамической точки зрения все органические соединения должны окисляться не только озоном, но и молекулярным кислородом, пероксидом водорода, другими активными формами кислорода. Скорости этих процессов могут изменяться в широких пределах. Например, окисление озоном водного раствора мета-крезола протекает за тысячные доли секунды:

 

3СН3—С6Н4ОН + 17О3 = 21СО2 + 12Н2О

 

Водный раствор лигносульфоната натрия разрушается озоном за десять минут, для полного окисления тиофенола требуется не менее одного часа. В работе приведены данные по скорости озонолиза широкого спектра органических соединений, причем величина константы скорости озонолиза различных веществ варьируется в диапазоне до десятка порядков. Однако, трудноокисляемые озоном органические вещества в составе РОВ представляют собой пренебрежимо малые примеси, в основном, антропогенного происхождения, поэтому взаимодействие с озоном сложных по составу водных растворов органических веществ биогенного происхождения идет достаточно быстро: свыше 90% органического вещества окисляется за первые три минуты. Отметим, что эта общая закономерность, распространяемая и на органическое вещество почв и донных отложений.

В общем виде реакцию вещества Е с различными формами активного кислорода Охможно записать следующим образом:

 

Е + Ох продукты

 

Общая скорость такой реакции определяется величинами констант скоростей k реакций окисления вещества Е индивидуальными формами активного кислорода Ох:

 

— d[E] / dt = (k1 [ Ох1 ] + k2 [ Ох2 ] + … + kn [ Охn ]) · [ E ]

 

Реальные условия озонолиза предусматривают непрерывную подачу озона в реактор, то есть, озон находится в избытке, а это означает, что его концентрация за время реакции изменяется пренебрежимо мало, пренебрежимо мал вклад и остальных активных форм кислорода. В этом случае реакция озонолиза может быть рассмотрена как реакция псевдопервого порядка по реагенту Е,а ее уравнениеможно записать в виде:

 

d[E] / dt = kЕ · [E],

где kЕ константа скорости окисления озоном вещества Е.

Графически эта зависимость представляет собой убывающую экспоненциальную кривую, причем тангенс угла наклона касательных к каждой точке кривой есть скорость реакции в этой точке. Константа скорости реакции псевдопервого порядка имеет размерность [с-1] и может быть определена из величины периода полупревращения Т ½ вещества Е:

 

kЕ = ln2/ Т ½ ~ 0,693/ Т ½ ,

при этом очевидно, что kЕ независит от концентрации вещества Е и является мерой устойчивости вещества Е к озону.

Метод определения Т ½ по форме кинетической кривой озонолиза вещества Е иллюстрируется на рисунке 2, где а — типичная кривая озонолиза органического вещества биогенной природы. В общем случае, при определении констант скоростей параметр «концентрация вещества Е»

может быть заменен любыми измеряемыми параметрами, пропорциональными концентрации (оптическая плотность, электропроводность, люминесценция и т.п.).

На рисунке 2 в приведена та же кинетическая кривая, что и на рисунке 2а, но построенная в координатах ln I - t, где I — интенсивность люминесценции, измеряемой в ходе реакции озонолиза вещества Е. Зависимость выражается прямой линией, так что, отложив в любой области оси у величину ln 2 можно получить соответствующую величину Т ½ как интервала времени, в течение которого количество вещества Е уменьшится вдвое. В случае озонолиза природных вод картина будет сложнее. В природных водах идет одновременно большое число реакций озонолиза различных веществ с различными скоростями взаимодействия с озоном. Каждая кинетическая кривая индивидуальной реакции в полулогарифмическом масштабе может быть представлена прямой (как на рисунке 2а), но их суперпозиция представляет собой суммарную кривую, изображенную на рисунке 2с.

Касательные, проведенные к началу и концу этой кривой позволяют легко определить константы скоростей реакции озонолиза наиболее легкоокисляемых и наиболее трудноокисляемых компонентов сложной смеси подвергаемых озонолизу веществ.

Рисунок 2. Кинетическая характеристика озонолиза органических соединений.

а — типичная кривая изменения во времени концентрации вещества Е;

в — зависимость интенсивности хемилюминесценции I от времени в полулогарифмическом масштабе при окислении озоном вещества Е и определение времени полупревращения Т ½ ;

с — зависимость интенсивности хемилюминесценции I от времени в полулогарифмическом масштабе при окислении озоном сложной смеси веществ Е1, Е2… Еn К началу и концу результирующей суммарный процесс кривой проведены касательные, по которым можно определить Т ½ как в случае «в»;

В данном исследовании константу скорости наиболее легкоокисляемого вещества измеряли с помощью касательной, проведенной к начальным точкам кривых, построенных в полулогарифмическом масштабе. Эту константу скорости наиболее легкоокисляемого вещества обозначим kл и считаем ее мерой неустойчивости вещества к окислению, то есть, мерой биодоступности, снижающейся при антропогенной нагрузке, в частности, при химическом загрязнении водных экосистем [6].

 







Дата добавления: 2015-10-19; просмотров: 523. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия