Парабола
Пара́бола (греч. παραβολή – приложение) – геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы). Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом.
Каноническое уравнение параболы в прямоугольной системе координат: y 2 = 2 px, p > 0 (или x 2 = 2 py, если поменять местами оси). Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина – тоже, поэтому она лежит между фокусом и директрисой на расстоянии от обоих. Квадратное уравнение y = ax 2 + bx + c при a ¹ 0 также представляет собой параболу и графически изображается той же параболой, что и y = ax 2, но в отличие от последней имеет вершину не в начале координат, а в некоторой точке , координаты которой вычисляются по формулам: xA = , yA = , где D = b 2 – 2 a c – дискриминант. Ось её симметрии проходит через вершину параллельно оси ординат, при a >0 (a <0) фокус лежит на этой оси над (под) вершиной на расстоянии 1/4 a, а директриса – под (над) вершиной на таком же расстоянии и параллельна оси абсцисс. Уравнение y = ax 2 + bx + c может быть представлено в виде y = a (x – xA)2 + yA, а в случае переноса начала координат в точку A каноническим уравнением. Таким образом для каждого квадратного уравнения можно найти систему координат такую, что в этой системе оно представляется каноническим. При этом .
Свойства параболы: Парабола имеет ось симметрии, называемой осью параболы. Ось проходит через фокус и вершину перпендикулярно директрисе. Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.
Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей. Параболы в физическом пространстве. Траектории некоторых космических тел (комет, астероидов и других), проходящих вблизи звезды или другого массивного объекта (звезды или планеты) на достаточно большой скорости имеют форму параболы (или гиперболы). Эти тела вследствие своей большой скорости не захватываются гравитационным полем звезды и продолжают свободный полёт. Это явление используется для гравитационных манёвров космических кораблей. При отсутствии сопротивления воздуха траектория полёта тела в приближении однородного гравитационного поля представляет собой параболу. Также параболические зеркала используются в любительских переносных телескопах систем Кассергена, Шмидта — Кассергена, Ньютона, а в фокусе параболы устанавливают вспомогательные зеркала, подающие изображение на окуляр. При вращении сосуда с жидкостью вокруг вертикальной оси поверхность жидкости в сосуде и вертикальная плоскость пересекаются по параболе. Свойство параболы фокусировать пучок лучей, параллельных оси параболы, используется в конструкциях прожекторов, фонарей, фар, а также телескопов-рефлекторов (оптических, инфракрасных, радио…), в конструкции узконаправленных (спутниковых и других) антенн, необходимых для передачи данных на большие расстояния, солнечных электростанций и в других областях. Форма параболы иногда используется в архитектуре для строительства крыш и куполов.
|