Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условия равновесия на границе двух сред (жидкость - жидкость).





Явления, которые возникают на границе двух несмешивающихся жидкостей, определяются силами поверхностного натяжения. Хорошо известно, что разные жидкости ведут себя по-разному. Так, капля масла, помещенная на поверхность воды, принимает форму линзы, а капля бензина растекается на поверхности воды, образуя очень тонкую пленку. Пусть имеем границу трех сред: жидкость 1 граничит с жидкостью 2, жидкости 1 и 2 граничат со средой 3, которая представляет собой смесь воздуха и паров жидкостей 1 и 2.

Рис 1

Рассмотрим случай, когда капля жидкости 2 под действием силы тяжести втягивается в жидкость 1, приобретая форму линзы (рис.1). Граница соприкосновения трех сред представляет собой окружность. На каждый элемент длины Δl этой окружности действуют три силы: Все эти силы направлены по касательным к поверхностям соприкосновения граничащих сред: – коэффициенты поверхностного натяжения на соответствующих границах раздела. Поскольку газовые среды оказывают слабое влияние на поверхностное натяжение граничащей с ними жидкости, то можно приблизительно считать, что и .Капля жидкости 2 будет находиться в равновесии при условии, что все действующие на нее силы друг друга взаимно уравновешивают. Спроектировав все действующие на каплю 2 силы на горизонтальное и вертикальное направления, получаем: Используя выражения ,равенства можно представить в виде: Возведя в квадрат последние соотношения и сложив их, получаем: Используя обозначение , равенство можно записать в виде: Полученное равенство показывает, что угол θ определяется значениями коэффициентов поверхностного натяжения, то есть, в конечном счете, силами молекулярного взаимодействия между молекулами каждой жидкости и молекулами граничащих с ней сред.

Очевидно, что при некотором соотношении между может возникнуть ситуация, при которой cosθ окажется равным единице. Это означает, что угол θ равен нулю. Значение краевого угла θ = 0 соответствует условию, при котором жидкость 2 растекается по поверхности жидкости 1 в виде очень тонкой пленки. В этом случае принято говорить, что жидкость 2 полностью смачивает жидкость 1. Таким образом, полное смачивание наблюдается при выполнении условия В том случае, когда выполняется неравенство капля жидкости 2 на поверхности жидкости 1 будет стягиваться до тех пор, пока не наступит ситуация, соответствующая выполнению условия то условие определяет положение жидкости 2 на поверхности жидкости 1 в виде двояковыпуклой линзы, как это представлено на рис. 1.







Дата добавления: 2015-10-19; просмотров: 1481. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия