Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие правила интегрирования





Постоянный множитель можно выносить за знак интеграла:

.

Интеграл суммы (разности) равен сумме (разности) интегралов от слагаемых:

, где u,v,w – функции от x.

Правило подстановки:

если x=z(t), то .

Интегрирование по частям

, где u,v – функции от x.

В дальнейшем во всех формулах постоянная интегрирования опущена, первообразные, содержащие , следует понимать как , знак абсолютной величины опущен для простоты.

Таблица основных интегралов

Степенные функции Показательные функции
; . .
. .
Тригонометрические функции Гиперболические функции
. .
. .
. .
. .
. .
. .
Дробно-рациональные функции Иррациональные функции
. .
. .
. .

 

Интегрирование иррациональных функций

Эти интегралы вычисляются с помощью следующих подстановок:

; или
;

; ;

;

(n-наименьшее общее кратное показателей всех радикалов, под которым X входит в подынтегральную функцию)

 

, Интегралы этого вида после выделения полного квадрата под корнем линейными подстановками сводятся к следующим:

1) если а > 0, то

2) если а < 0, то

 

 

Интегрирование биномиальных дифференциалов

,

может быть выражен в элементарных функциях только в следующих трех случаях:

1) p- целое. Следует произвести все указанные действия в подынтегральной функции.

2) - целое. Замена , где r- знаменатель дроби p

3) - целое. Замена , где r- знаменатель дроби p







Дата добавления: 2015-10-19; просмотров: 472. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия