Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие правила интегрирования





Постоянный множитель можно выносить за знак интеграла:

.

Интеграл суммы (разности) равен сумме (разности) интегралов от слагаемых:

, где u,v,w – функции от x.

Правило подстановки:

если x=z(t), то .

Интегрирование по частям

, где u,v – функции от x.

В дальнейшем во всех формулах постоянная интегрирования опущена, первообразные, содержащие , следует понимать как , знак абсолютной величины опущен для простоты.

Таблица основных интегралов

Степенные функции Показательные функции
; . .
. .
Тригонометрические функции Гиперболические функции
. .
. .
. .
. .
. .
. .
Дробно-рациональные функции Иррациональные функции
. .
. .
. .

 

Интегрирование иррациональных функций

Эти интегралы вычисляются с помощью следующих подстановок:

; или
;

; ;

;

(n-наименьшее общее кратное показателей всех радикалов, под которым X входит в подынтегральную функцию)

 

, Интегралы этого вида после выделения полного квадрата под корнем линейными подстановками сводятся к следующим:

1) если а > 0, то

2) если а < 0, то

 

 

Интегрирование биномиальных дифференциалов

,

может быть выражен в элементарных функциях только в следующих трех случаях:

1) p- целое. Следует произвести все указанные действия в подынтегральной функции.

2) - целое. Замена , где r- знаменатель дроби p

3) - целое. Замена , где r- знаменатель дроби p







Дата добавления: 2015-10-19; просмотров: 472. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия