Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доплеровские измерители скорости и угла сноса ВС





ДИСС - универсальные и высокоэффективные автономные навигационные приборы. Они отличаются высокой точностью при сравнительно малых массе, габаритных размерах и энергопотреблении. ДИСС входят в состав современных бортовых навигационных комплексов в качестве их элемента, являясь датчиком информации о скорости, удачно дополняющего информацию, получаемую от других радио- и геотехнических средств.

С помощью ДИСС можно также получать информацию о таком опасном метеорологическом явлении, как сдвиг ветра. Сдвигом ветра называется явление быстрого пространственного изменения направления и скорости ветра. Очевидно, что сдвиг ветра представляет опасность, особенно при пилотировании ВС на небольших высотах, и, в частности, при посадке.

О существовании сдвига, ветра можно судить, сопоставляя данные о скорости и направлении ветра у земной поверхности, получаемые на аэродроме, с данными, получаемыми на борту ВС. Если эти данные сильно различаются, то велика вероятность наличия сдвига ветра. Информация о скорости и направлении ветра в точке расположения ВС может быть получена по данным о путевой скорости, поступающим от ДИСС и воздушной скорости от бортового измерителя аэродинамического типа. Информация о скорости ветра у земли сообщается экипажу диспетчером.

Эффект Доплера и его использование для радионавигационных измерений.

 

При измерении путевой скорости и угла сноса используется эффект Доплера. Эффект Доплера состоит в том, что частота принимаемых колебаний оказывается отличной от частоты излучаемых колебаний, если расстояние между излучателем и приемником изменяется, т. е. если излучатель и приемник движутся друг относительно друга.

При изменении расстояния между приемником и пере­датчиком частота принимаемых колебаний будет отличаться от частоты излучаемых колебаний на величину, пропорциональную радиальной составляющей скорости их взаимного перемещения. Если в точке С (рис.41) установлен передатчик, излучающий гармонические колебания с частотой ω вида е = Ε cosωt, то принимаемые колебания в точке С.

 

епр = Eпр ·cos ω (t - t з ) = Eпр· cos (ωt - 2ω· r / c); t з = r / c.

 

Предположим, что расстояние r с течением времени изменяется, т.е. r = r(t). Определим частоту сигналов в точке приема. Так как частота равна производной от фазы по времени, то

 

 


Рис.41. Схема регистрации эффекта Доплера

 

ωпр = ∂φпр /∂t = -∂(ωt - 2ω · r/c)/∂t = ω - 2ω/c · ∂r/∂t,

где - ∂r/∂t - скорость изменения расстояния r, равная радиальной составляющей скорости взаимного перемещения точек С и З.

Из формулы следует, что при изменении расстояния между наблюдателем и отражающим предметом частота принимаемых сигналов оказывается не равной частоте излучаемых сигналов. Угловые (их часто называют круговыми) частоты колебаний ωпр и ω различаются на величину Ω.д

 

ωпр - ω = Ωд = -(2ω/c) · ∂r/∂t = -2π f ·(∂r/∂t) / λ;.

Частоты принимаемых и излучаемых колебаний отличаются на величину

 

 


F д = Ω д /2π = - (2·∂r/∂t) ∕λ;,

которая называется доплеровским смещением частоты. Оно пропорционально радиальной составляющей скорости взаимного перемещения объектов и обратно пропорционально длине волны. Из описания процесса возникновения доплеровского смещения частоты видно, что оно является следствием изменения фазы сигнала, которое происходит при взаимном перемещении точек излучения и отражения (переизлучения) сигнала. В общем случае, когда вектор отно­сительной скорости отражателя равен W и составляет с направлением распространения угол β, радиальная составляющая скорости

∂r/∂t = W cos β;.

Принцип измерения путевой скорости и угла сноса.

 

Идею измерения путевой скорости и угла сноса можно представить себе следующим образом. Предположим, что с борта ВС с помощью остронаправленной антенны ведется облучение некоторого элемента земной поверхности. Проекция оси ДН на горизонтальную плоскость составляет с продольной осью ВС угол β, а вектор путевой скорости W из-за сноса смещен относительно продольной оси на угол α (угол сноса). Ось ДН в вертикальной плоскости смещена относительно горизонтальной плоскости на угол γ.

Будем предполагать, что при движении ВС отражение сигналов происходит лишь от одного элемента поверхности, расположенного в центре отражающей площадки, т. е. от элемента, на который направлена ось ДНА.

Рис. 42. Ориентация ДНА в горизонтальной и вертикальной плоскостях

 

Рассчитаем доплеровское смещение сигналов, отражаемых этим элементом. Определим проекцию скорости относительного движения элемента на ось ДНА. Из рис.42, видно, что проекция вектора путевой скорости на ось ДНА

W2 = W1· cosγ = W·cosθ · cosγ;

Если луч антенны ориентирован в направлении полета, то ∂г/∂t < 0.

В этом случае доплеровское смещение частоты положительно:

 

 

Fд = 2W·cosθ·cosγ / λ;

 

Проводя измерения доплеровского смещения частоты, можно определить значение и направление путевой скорости ВС. Предположим, что есть возможность поворачивать ДНА относительно ВС вокруг вертикальной оси. При повороте можно найти такое положение ДНА, при котором доплеровское смещение частоты достигает своего максимального значения. Это произойдет тогда, когда угол θ станет равным нулю, т. е. когда вектор путевой скорости W окажется в той же вертикальной плоскости, в которой располагается и ось ДНА. При этом угол между вертикальной плоскостью, проходящей через ось ДН, и вертикальной плоскостью, проходящей через продольную ось ВС, будет равен углу сноса а. Этот угол измеряется и отображается соответствующими указателями.

Если фиксируется максимальное значение доплеровского смещения частоты, справедливо соотношение:

Fmax =2Wcosγ/λ;.

 

Рис. 43. Упрощенная схема ДИСС

 

 

Так как угол γ и длина волны λ известны, то по измеренному максимальному значению доплеровского смещения частоты можно рассчитать путевую скорость:

W = Fд max λ ∕ 2cosγ;

Эту операцию выполняет вычислитель, который входит в состав доплеровского устройства или в состав БНК. Из изложенного ясно, что для определения путевой скорости и угла сноса на борту ВС необходимо располагать передатчиком, приемником, направленной антенной А, частотомером Ч, вычислителем и указателями скорости и угла сноса У (рис.43).

Особенности реализации доплеровских измерителей скорости.

 

Из описания принципа действия простейшего доплеровского измерителя видно, что угол наклона оси ДНА к горизонту γ должен быть стабилизирован или должен точно измеряться в процессе функционирования ДИСС. Для того чтобы избежать этого и исключить влияние угла γ на результаты определения модуля путевой скорости, а также для повышения точности измерения угла сноса в условиях, когда антенная система ДИСС жестко закрепляется на ВС, применяются многолучевые ДИСС. Наиболее широкое распространение получили трехлучевые ДИСС, оси ДН, которых ориентированы так, как показано на рис.44.

 

 

Рис.44. Ориентация осей лепестков ДНА в трехлучевом ДИСС

 

На этом рисунке буквами x,y,z обозначены оси связанной системы координат, цифрами 1,2,3 - точки пересечения осей ДН с поверхностью Земли, буквами γ, Г, α - углы между осями ДН и горизонтальной поверхностью, углы между горизонтальными проекциями этих осей и осью x и угол сноса. Учитывая соотношения, приведенные на рис.44, для доплеровских сдвигов частоты по лучам 1, 2, 3 получим следующие значения:

 

Fд1 = (2W/λ) · cos (Г+a) cosγ; Fд2 = - (2W/λ) · cos (Г-a) cosγ;;

Fд3 = - (2W/λ) · cos (Г+a) cosγ;.

На самолетные ДИСС возлагается задача определения горизонтальной составляющей полной скорости и угла сноса. Решив приведенные уравнения, получим:

α = arctg [(Fд3 - Fд2) ctgГ /(Fд1 - Fд2)];

W = (Fд1 - Fд2 )·λ secα /4 cosγ·cosГ.

Таким образом, измеряя доплеровские сдвиги частоты по трем лучам при известной частоте излучаемых колебаний и углах Г и γ, находят угол сноса и путевую скорость.

Вертолетные ДИСС позволяют определять все три составляющие
вектора полной скорости, в том числе и вертикальную его составляющую. В принципе эта задача также решается по трем составляющим скорости, соответствующим осям ДН 1,2,3. Особенностью вертолетных ДИСС является также то, что они предназначаются для работы в условиях, когда направления скоростей могут изменяться на противоположные, т.е. с их помощью необходимо определять не только значение, но и знаки доплеровских смещений.

Точность ДИСС.

Погрешности ДИСС, как и погрешности любого измерительного устройства, можно разделить на методические и инструментальные. К числу наиболее значительных методических погрешностей относятся погрешности из-за различия отражающих свойств разных участков земной и водной поверхностей.

Для уяснения причин возникновения погрешностей этого типа необходимо, прежде всего, отметить следующее обстоятельство: если излучаемый сигнал представляет собой монохроматическое колебание, отраженный сигнал в ДИСС оказывается многочастотным. Причина этого явления заключается в том, что ДН передающих и приемных антенн ДИС имеют конечные угловые размеры и в пределах "освещаемого" участка земли оказывается не одна единственная точка, а некоторое множество точек.

Так как углы, под которыми эти точки видные борта ВС, различаются, то различаются и частоты сигналов, отражаемых этими точками. Поэтому отраженный сигнал содержит целый спектр доплеровских частот.

Если бы коэффициент отражения от земли не зависел от угла падения волн, то огибающая спектра определилась бы квадратом ДНА по мощности и максимум спектра соответствовал бы максимуму ДНА. Однако коэффициент отражения не зависит от угла падения только для ламбертовых отражателей. Для большинства реальных отражающих поверхностей наблюдается зависимость коэффициента отражения от угла падения волны. Поэтому и мощность отраженного сигнала зависит от этого угла. Например, для водной поверхности с уменьшением угла падения возрастает коэффициент отражения. Так как меньшим значениям угла падения соответствуют меньшие значения доплеровских частот, мощность отраженного сигнала в области меньших значений частот возрастет. Таким образом, максимум огибающей спектра сместится в сторону меньших значений частоты.

Наиболее заметно это смещение при переходе с суши на море. Одна­ко сдвиг максимума доплеровского спектра происходит не только при переходе с суши на море, но и при всяком изменении отражающих свойств поверхности, сопровождающемся изменением зависимости коэффициента отражения от угла падения. Смещение зависит также и от степени взволнованности водной поверхности. Погрешности описываемого типа можно уменьшить, вводя при переходе с суши на море поправку, соответствующую наиболее часто встречающейся величине волнения. Основные эксплутационно-технические характеристики ДИСС ГА представлены в таблице 5.

 

Таблица 5

Характеристика ДИСС-013 ДИСС-016 ДИСС-015
Рабочая частота, ГГц 13,32 8,8 13,325
Диапазон измерения:      
_- путевой скорости, км/ч 180…1300 150…1300 50…399
- угла сноса, град ± 30 ± 30 ± 45
Диапазон измерений составляющих вектора скорости в режиме висения:  
- продольной (Wx), км/ч - - - 25…+ 50
- поперечной (Wz ), км/ч - - ± 25
-вертикальнотй (Wy), м/с     ± 10
Погрешности (2σ) измерения:    
-путевой скорости 0,25%W 0,3%W 1%W+3км/ч
- угла сноса, угл. Мин      
-ортодромических координат - - 2%S+2км
- Wx,, Wz , км/ч - -  
-Wy, м/с     0,8
Масса комплекта, кг   28..33 63…70
СВНО, ч     -
         

Органы управления и приборы индикации ДИСС.

ДИСС представляют собой, простые и удобные в эксплуатации навига­ционные устройства. Управление функционированием ДИСС полностью автоматизировано.

 

Рис.45. Основные органы управления и отображения данных трехканального ДИСС-016.

 

а — блок логики и выдачи данных (ЛВД); б - индикатор путевой скорости и угла сноса; в — блок счисления пути (СП); 1 — табло угла сноса; 2, 3 — кнопки вклю­чения и выключения контроля; 4 — переключатель "Ввод —счет"; 5 —переключа­тель "Работа — контроль"; б — табло "Память"; 7 — переключатель "Суша —море" 8 — табло отображения расстояния до очередного ППМ; 9 — ручки ввода координат ИПМ; 10 —регулятор яркости подсвета

 

В обязанности оператора (пилота и штурмана) входит лишь включение ДИСС и установка переключателя "Суша-море" в соответствующее положение.

В ДИСС, обеспечивающих автономное счисление пути, вводятся также координаты исходного пункта маршрута (ИПМ) или соответствующего ППМ и включается вычислитель в момент пролета этих пунктов.

Если ДИСС, входит в составе БНК, эти операции осуществляются автоматически.

В ДИСС помимо основного рабочего режима, в котором производится счисление пути по информации от ДИСС, предусмотрен режим "Память", который включается автоматически при исчезновении данных о доплеровском смещении частоты. В этом режиме счисление производится по данным воздушной скорости с учетом скорости и направления ветра, которые были зафиксированы в момент прекращения поступления доплеровской информации.

Кроме режима "Память", в ДИСС предусмотрен режим "Контроль". Для контроля работоспособности ДИСС переключатель "Р - К" устанавливается в положение "К". При этом на указателях путевой скорости появляется значение W, равное (790 ± 30) км/ч, а на указателе УС — значение ± 2°.

Органы управления и отображения данных трехканального ДИСС - 016 показаны на рис.45. Блоки ЛВД, СП и индикатор размещаются на приборной доске второго пилота. На передней панели индикатора установлены основные органы управления ДИСС: переключатели "К - Р” и "С - М", а справа от центра индикатора - табло "Память" (П), включаемое при переходе на счисление пути при отсутствии данных от ДИСС. Результаты измерения путевой скорости выдаются на цифровые указатели индикатора и блока ЛВД. Результаты определения угла сноса отображают на индикаторе, блоке ЛВД, плановом навигационном приборе (ПНП) и на индикаторе навигационной обстановки (ИНО).







Дата добавления: 2015-10-19; просмотров: 5164. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия