Фоторезистивный эффект
Фоторезистивный эффект (внутренний фотоэлектрический эффект) — это изменение удельного сопротивления полупроводника, обусловленное исключительно действием электромагнитного излучения (квантов света) и не связанное с нагреванием полупроводника. Сущность этого явления состоит в том, что при поглощении квантов света с энергией, достаточной для ионизации собственных атомов полупроводника или ионизации примесей, происходит увеличение концентрации носителей заряда. В результате увеличения концентрации носителей уменьшается удельное сопротивление полупроводника. Для существования фоторезистивного эффекта необходимо, чтобы в полупроводнике происходило либо собственное поглощение квантов света с образованием новых пар носителей заряда, либо примесное поглощение с образованием носителей одного знака. В области собственного поглощения избыточные концентрации электронов и дырок, равные между собой, должны быть пропорциональны показателю поглощения, интенсивности света и времени жизни: (4.3) где - внутренний квантовый выход; α- показатель поглощения; I-интенсивность света, - время жизни. Коэффициент пропорциональности β называют внутренним квантовым выходом, так как он определяет число пар носителей заряда (или число носителей заряда при примесном поглощении), образуемых одним поглощенным квантом света, если интенсивность света I измерять числом квантов в секунду. Внутренний квантовый выход будет меньше единицы, если существуют условия для поглощения носителями заряда. В этом случае энергия некоторых квантов будет расходоваться на повышение энергии носителей заряда, а не на образование новых носителей заряда. При освещении полупроводника наряду с генерацией новых носителей заряда происходит и обратный процесс — рекомбинация. При непрерывном освещении между этими двумя противоположными процессами генерации и рекомбинации устанавливается некоторое динамическое равновесие. Внешнее проявление фоторезистивного эффекта может быть продемонстрировано по средством анализа ряда закономерностей наблюдаемых у полупроводниковых материалов включенных в электрическую цепь. ВАХ Вольт-амперные характеристики представляют собой зависимости светового тока I СВ при неизменной величине светового потока, а также темнового тока I тем от приложенного к полупроводнику напряжения (рис.4.4). При малых напряжениях сопротивление полупроводника определяется в основном сопротивлением контактов. Напряжение, приложенное к полупроводнику, падает в основном на контактах между зернами полупроводника. Поэтому напряженность электрического поля на контактах получается большой даже при малых напряжениях на полупроводнике. В связи с этим при увеличении приложенного напряжения сопротивление контактов уменьшается либо из-за эффектов сильного поля (например, туннелирование сквозь тонкие потенциальные барьеры на контактах), либо из-за разогрева приконтактных областей отдельных зерен полупроводника.
При дальнейшем увеличении напряжения сопротивление полупроводника будет определяться уже объемным сопротивлением зерен полупроводника и поэтому будет оставаться постоянным, что соответствует линейному участку вольт-амперной характеристики. При больших напряжениях на полупроводнике вольт-амперная характеристика опять может отклоняться от линейной, становясь или сверхлинейной или сублинейной. Сверхлинейность связана с повышением температуры полупроводникового материала из-за большой выделяющейся мощности. Сублинейность может наблюдаться у полупроводников, изготовленных из монокристаллического полупроводника и имеющих малое расстояние между электродами по сравнению с дрейфовым сдвигом носителей заряда. При этом носители, возникшие в фоточувствительном слое, за время жизни успевают перейти в металлический электрод и перестают участвовать, таким образом, в фоторезистивном эффекте.
|