Единичный жребий и формы его организации
Основным элементом, из совокупности которых складывается монте-карловская модель, является одна случайная реализация моделируемого явления, например: один «обстрел» цели», один «день работы» транспорта, одна «эпидемия» и т.п. Реализация представляет собой как бы один случай осуществления моделируемого случайного явления (процесса) со всеми присущими ему случайностями. Она разыгрывается с помощью специально разработанной процедуры или алгоритма, в котором важную роль играет собственно «розыгрыш» или бросание жребия». Каждый раз, когда в ход моделируемого процесса вмешивается случайность, её влияние учитывается не расчетом, а бросанием жребия. Предположим, что в ходе моделируемого процесса наступил момент, когда его дальнейшее развитие (а значит и результат) зависит от того, появилось ли на данном этапе событие А или не появилось (например: произошло ли попадание в цель, обнаружен ли некоторый объект, исправна ли некоторая аппаратура и т.д). Тогда нужно «бросанием жребия» решить вопрос: появилось событие А или не появилось? Для этого нужно привести в действие некоторый случайный механизм розыгрыша (бросить игральную кость, несколько монет или выбрать число из таблицы случайных чисел) и условиться о том, какой результат жребия означает появление, а какой – непоявление события А). Ниже мы увидим, что розыгрыш всегда можно организовать так, чтобы событие А имело любую наперед заданную вероятность. Кроме событий, появляющихся случайным образом, на ход и исход операции могут так же влиять разные случайные величины (время, координаты и т.д.). С помощью жребия можно разыграть значения любой случайной величины или совокупность значений нескольких случайных величин. Условимся называть единичным жребием любой элементарный опыт, в котором решается один из вопросов: 1. Произошло или не произошло событие А? 2. Какое из возможных событий А1,А2,…Аk произошло? 3. Какое значение приняла случайная величина Х? 4. Какую совокупность значений приняла система случайных величин Х1,Х2,…Хk? Рассмотрим способы организации всех разновидностей единичного жребия. При любой организации жребия должен быть пущен в ход какой-то механизм случайного выбора. Механизмы могут быть самыми разнообразными, однако любой из них может быть заменен стандартным механизмом, позволяющим решить одну задачу: получить случайную величину, распределенную с постоянной плотностью от 0 до 1. Условимся для краткости называть такую случайную величину «случайное число от 0 до 1» и обозначать R. 1. Появилось или нет событие А? Пусть вероятность события А равна p: Р(А)=р. Выберем с помощью стандартного механизма случайное число R и будем считать, что если оно меньше р, событие А произошло, если больше р – не произошло. Действительно: если R– случайное число от 0 до 1, то где f(r)=1 при 0<r<1 или 2. Какое из нескольких возможных событий появилось? Пусть имеется полная группа несовместных событий: А1,А2,…Аk с вероятностями р1,р2,…рk. Т.к. события несовместны и образуют полную группу, то р1+р2+…+рk=1. Разделим весь интервал от 0 до 1 на k участков длиной р1,р2,…рk. Если случайное число R, выданное стандартным механизмом, попало, например, на участок р3, это означает, что появилось событие А3. 3. Какое значение приняла случайная величина? ( читать на сайте подробноhttp://www.sardismusic.com/topics/t12r2part2.html) 4. Какую совокупность значений примет система случайных величин? Пусть имеется система случайных величин: Х1, Х2, …Хn с совместной плотностью распределения f(х1,х2,…,хn. Если случайные величины независимы, то f(х1,х2,…,хn)=f1(x1)f2(x2) …fn(xn) и розыгрыш совокупности значений системы х1, х2,…,хn сводится к тому, чтобы разыграть каждую из них в отдельности, т.е. организовать n единичных жребиев типа, описанного в п.3. Если случайные величины зависимы, то f(х1,х2,…,хn)=f1(x1)f(x2/x1)f(x3/x1x2)…, где каждая последующая плотность распределения берется условная, при условии, что предыдущие случайные величины приняли определенные значения. При розыгрыше последовательности значений случайных величин получается сначала значение х1 случайной величины Х1; это значение берется в качестве аргумента в условной плотности f(x2/x1); разыгрывается значение х2 случайной величины Х2, оба значения х1, х2 берутся в качестве аргументов в условной плотности f(x3/x1x2) и т.д.
|