Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление производных


При написании сложных формул, особенно использующих вложенные функции, использование мастера функций - наилучшее решение. Он очень облегчает и ускоряет ввод формул, и делает многие вещи за нас: автоматически вставляет знак "равно", имя функции, круглые скобки, расставляет точки с запятой. Позволяет просматривать значение ссылок и результаты промежуточных вычислений.

В одну функцию можно вставить другую функцию. Допускается до 7-ми уровней вложения функций (в Office 2007 -- до 64). Например, СУММ(СТЕПЕНЬ(2,3);5)Для этого из окна одной функции нужно выбрать в адресном окне другую функцию, ввести необходимые аргументы. После этого окно мастера функций для предыдущей функции (в этом примере "СУММ") сменится на окно для вставляемой функции ("СТЕПЕНЬ"), и ее название в формуле сделается жирным. Чтобы опять вернуться к окну для функции "СУММ", достаточно просто щелкнуть в строке формул на ее названии, и окно для степени сменится на окно для "СУММ". После этого функция "СУММ" в названии станет жирной, показывая, что в данный момент окно открыто именно для нее.

Вычисление логарифмов. Преобразование логарифмических выражений

 

 

ВАРИАНТ 2

ВАринт 3

В варианте №7 не надо решать №3, №6.

ответы

Вычисление производных

 

1. Закон движения точки по прямой задается формулой , где — время (в секундах), — отклонение точки в момент времени (в метрах) от начального положения. Найдите среднюю скорость движения точки от момента времени с до момента:

а) с; в) с;

б) с; г) с.

Вычислите мгновенную скорость точки в момент с.

 

2. Закон движения точки по прямой задается формулой , где — время (в секундах), — отклонение точки в момент времени (в метрах) от начального положения. Найдите среднюю скорость движения точки от момента времени с до момента:

а) с; в) с;

б) с; г) с.

Вычислите мгновенную скорость точки в момент с.

 

3. Закон движения точки по прямой задается формулой , где — время (в секундах), — отклонение точки в момент времени (в метрах) от начального положения. Найдите среднюю скорость движения точки от момента времени с до момента:

а) с; в) с;

б) с; г) с.

Вычислите мгновенную скорость точки в момент с.

 

4. Закон движения точки по прямой задается формулой , где — время (в секундах), — отклонение точки в момент времени (в метрах) от начального положения. Найдите мгновенную скорость движения точки, если:

а) ; в) ;

б) ; г) .

 

5. Закон движения точки по прямой задается формулой , где — время (в секундах), — отклонение точки в момент времени (в метрах) от начального положения. Найдите скорость и ускорение точки в момент времени , если:

а) с; в) с;

б) с; г) с.

 

6. Найдите производную функции:

1) ; 4) ; 7) ; 10) ;

2) ; 5) ; 8) ; 11) ;

3) ; 6) ; 9) ; 12) .

7. Найдите производную функции:

1) ; 4) ; 7) ; 10) ;

2) ; 5) ; 8); 11) ;

3) ; 6) ; 9) ; 12) .

 

8. Найдите производную функции:

1) ; 5) ; 9) ;

2) ; 6) ; 10) ;

3) 7) ; 11)

4) ; 8) ; 12) .

 

9. Найдите производную функции:

1) ; 9) ;

2) ; 10) ;

3) ; 11) ;

4) ; 12) ;

5) ; 13) ;

6) ; 14) ;

7) ; 15) ;

8) ; 16) .

 

10. Найдите производную функции:

1) ; 9) ;

2) ; 10) ;

3) ; 11) ;

4) ; 12) ;

5) ; 13) ;

6) ; 14) ;

7) ; 15) ;

8) ; 16) .

 

11. Существует ли производная заданной функции в указанных точках? Если да, то найдите значения производных:

1) , ; 3) , , , .

2) , ; 4) , , , .

 

12. При каких значениях параметров и функция

а) непрерывна на всей числовой прямой;

б) дифференцируема на всей числовой прямой?

 

13. При каких значениях параметров и функция

а) непрерывна на всей числовой прямой;

б) дифференцируема на всей числовой прямой?

 

14. Строится мост параболической формы, соединяющий точки А и В, расстояние между которыми 200 м. Въезд на мост и съезд с моста должны быть прямолинейными участками пути, направленными к горизонту под углом a = 15°. Указанные участки должны быть касательными к параболе. Составьте уравнение профиля моста в заданной на рисунке системе координат.

 

15. а) При каких значениях параметра касательные к графику функции , проведенные в точках его пересечения с осью , образуют между собой угол 60°?

б) При каких значениях параметра касательные к графику функции , проведенные в точках его пересечения с осью , образуют между собой угол 45°?




<== предыдущая лекция | следующая лекция ==>
Формулы в Microsoft Excel | АПРОБАЦИЯ

Дата добавления: 2015-10-19; просмотров: 1423. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.016 сек.) русская версия | украинская версия