Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные сведения из теории. Частотный критерий В.М. Попова сформулирован для нелинейных систем с устойчивой линейной частью и позволяет исследовать устойчивость нулевого равновесного





 

Частотный критерий В.М. Попова сформулирован для нелинейных систем с устойчивой линейной частью и позволяет исследовать устойчивость нулевого равновесного состояния в целом, но не для одной фиксированной характеристики нелинейного элемента, а для некоторого семейства этих характеристик, принадлежащих к какому-либо классу [10,12. Определенное таким образом состояние равновесия называют абсолютно устойчивым.

Наиболее часто для систем со структурной схемой, приведенной на рис.1, рассматривают нелинейные характеристики, заключенные в секторе [0, ]. Обратимся к структуре системы с нелинейностью, содержащей зону нечувствительности, и нейтрально устойчивой [5] линейной частью с передаточной функцией (рис. 1, 2).

При наличии одного нулевого полюса положениями равновесия в системе являются любые точки внутри отрезка покоя . Для этого случая критерий В.М. Попова сохраняет силу при следующей модификации, предложенной А.Х. Гелигом [9,10].

Пусть все полюсы лежат слева, за исключением одного, равного нулю, причем .

 
 

Кроме того, пусть нелинейная функция определена следующим образом (рис. 2):

а вне этого отрезка лежит внутри заштрихованных секторов, то есть

(1)

причем выполнены условия:

(2)

Тогда, если найдется вещественное неотрицательное число такое, что не является полюсом , и при всех выполнено частотное неравенство

(3)

то при любых ограниченных начальных условиях процесс остается огра-ниченным при , а при стремится к одной из точек отрезка покоя . В этом случае говорят, что отрезок покоя точечно устойчив в целом.

Частотное неравенство (3) совпадает с достаточным условием устойчивости, составляющим суть критерия В.М. Попова, и имеет ту же геометрическую интерпретацию с точностью до того, что допускается проведение прямой, проходящей через точку и касающейся годографа модифицированной частотной характеристики [5,12].

Как видно из приведенной формулировки, наклон прямой не должен быть отрицательным. Кроме того, условия (1) не допускают, чтобы касалась оси абсцисс вне отрезка покоя, а условия (2) равносильны требованию «неплотного прилегания» к лучам.

Для того чтобы проверить выполнение критерия Гелига, следует построить годограф модифицированной частотной характеристики линейной части

где

,

и попытаться провести прямую, имеющую неотрицательный коэффициент наклона проходящую через точку и оставляющую годограф справа [5]. Если это удается, то отрезок покоя точечно устойчив в целом.

В лабораторной работе исследуется поведение следящей системы, в которой датчик рассогласования имеет зону нечувствительности, а усилитель –ограниченную зону линейности, то есть насыщение. Эти две нелинейности можно описать одной нелинейной зависимостью (рис.3). При и приходим к линейной модели, если остальные элементы следящей системы описываются линейным соотношениями.

 
 

Передаточную функцию скорректированной линейной части примем в виде

(4)

Из линейной теории следует, что пи соответствующем выборе параметров из условия

можно обеспечить заданные динамические свойства замкнутой линейной системы.

Для нелинейной модели следящей системы достаточное условие устойчивости (3) можно записать в виде

или для случая ПФ линейной части (4) – в форме неравенства

(5)

где , – соответственно вещественная и мнимая части функции , причем

,

,

.

Условию (5) можно дать специальную геометрическую интерпретацию. Если ввести условную частотную характеристику и построить ее годограф, то условие устойчивости (5) означает возможность провести прямую с неположительным коэффициентом наклона через точку так, чтобы годограф не заходил левее ее. По виду годографа можно определить предельное значение коэффициента передачи линейной части , превышение которого приводит к нарушению точечной устойчивости в целом рассматриваемого отрезка.

 







Дата добавления: 2015-10-19; просмотров: 1689. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия