Студопедия — Механикалық жүйелердің физикалық моделдерін есептеу
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Механикалық жүйелердің физикалық моделдерін есептеу






Машиналардың қолданбалы динамикасында физикалық және математикалық моделдерді құрастыру жауапты кезеңнің бірі болып саналады, өйткені динамикалық есептеудің дәлдігі нақты машинаның параметрлерін анықтаудың дәлдігіне және физикалық процестерді математикалык бейнелеуіне байланысты.

Есептеу бойынша математикалық жұмыс шешімінің күрделілігі, олардың санының көбеюіне қарай өсетінін ескере отырып, нақты механизмдер мен машиналардың физикалық моделін құрастырған кезде дискреттік массаның негізделген минималды санын таңдау негізгі болып саналады.

Машинадағы динамикалық құбылыстарды аналитикалық зерттеу үшін, оның эквиваленттік моделін, зерттелетін моделдің сандық және сапалық нәтижелерін, машинаны натуралдық сынақтан өткізу нәтижелерімен дәл сәйкес келетіндей етіп есептеу керек.

Өтпелі процестерді инженерлік есептеу практикасында, әдетте, алғашқы екі жиілікті ескеру керек, өйткені жоғары гармоникадағы тербелістерді есептеу, жетектің серпімді бөлігінде динамикалық жүктеменің қалыптасу сипатының сапалық өзгерісіне әкелмейді.

Физикалық моделдегі қосымша масса мен байланыстарды есептеу кезінде дифференциалдык тендеу тәртібін жоғарлату, анықталған сандық нәтижелермен емес, (10 пайызға дейін анықтау, әдетте, есептік схеманы анықтайтын қателер шегінде болуы керек), жетек жүйесінің жаңа динамикалык сипаттама сапасын зерттеу қажеттігімен байланысты болу керек.

Натуралық эксперименталдық зерттеулер, көпмассалы технологиялық машиналар жүйесінің күрделілігіне қарамастан, мүмкіндік шегіндегі есептеудің дәлдігімен, оларды үшмассалы физикалык моделге жеңіл айналдыруға болатынын көрсетті. Механизмдердің қарапайым кинематикалык. схемасында оларды ең карапайым екімассалық моделге айналдыруға болады.

Қозғағыштардың сипаттамасы, күрделі технологиялык жүктеменің өзгеру заңы, сияқты динамикалык процестер мен жүктемелердің қалыптасуын теориялық зерттеу және оған көптеген факторлардың әсер етуін жан-жақты бағалау мәселесі қойылғанда, сонымен бірге, сызықтық емес сипаттама беру кезінде, екі массалық моделмен шектелуге болады.

Күрделі жүйелердің динамикасын дәл анықтау, көп жағдайда тек масса санына ғана емес, сонымен бірге, сыртқы жүктеме, сызықтық емес байланыстар, машиналардың қосылыстарындағы саңылауларды ескеру және басқа технологиялық және конструктивтік факторларға да байланысты екенін айта кету керек.

Жаңғыруды (резонанс) есептеген кезде тербеліс жиілігін дәл анықтаудың маңызы өте көп, бұл жағдайда көпмассалы жүйені қарастырады.

Машинаның физикалык моделін құрастырған кезде дискреттік және шоғырланған массаларды дұрыс тандауға көңіл бөлу керек. Маховик, ротор, блок, шкив, білік, тісті және жүру доңғалақтары сияқты бөлшектер дискреттік массаларға жатады. Егер бөлшектің диаметрі білік диаметрінен екі және одан да көп есе асса, онда масса дискреттік деп есептеледі.

Машиналардың серпімді бөліктеріне біліктер, байланыстырғыш муфталар, тісті доңғалақ, тартпалы, шынжырлы және арқанды берілістер жатады. Олардың массаларының моменттік инерциясы ескерілмейді. Массалардың инерциялық моменттерін анықтау. Қозғағыш роторларының, тежелу шкивтерінің, муфталардың және т.б. бөлшектердің инерциясының моменттік мәнін тиісті каталогтардан табуға болады немесе олардың жақындатылған мәнін формула бойынша анықтауға болады:

мұнда т бөлшек массасы, кг; Dн - бөлшектің сыртқы диаметрі, м; k М - бөлшек конструкциясына тәуелді, денеге масса коэффициентінің таралуы: 0,125 бітеу білік үшін; 0,25 қуыс білік үшін; 0,11 жалғағыш муфталар үшін; 0,15 шкивтер үшін; 0,16 тісті доңғалақгар үшін.

Бөлшектің фасондык кыры (профилі) инерциясының моментін - қырын сатылы формамен ауыстырып, шамамен анықтауға болады. Бөлшектің әрбір учаскесі үшін инерция моментін анықтайды:

мұнда: р — материалдың тығыздығы, кг/м3; li, di. - учаскенің үзындығы немесе диаметрі, м.

Бөлшектің инерция моменті . Жалпы инерция моментін аналитикалық әдіспен табуға болады.

Шкив инерциясының моменті (15 сурет):

.

15 сурет - Күрделі бөлшектер (а) мен қисық шипті-жорғалағыш (кривишипно-ползундық) механизм (б) массаларының инерциялык моменттерін анықтау

 

Қисықшипті механизмді екі шоғырланған массамен ауыстыруға болады: кисық шкифтің цапфында 1) шатунның жоғарғы басының саусағында 2).. Қисықшипты механизмнің инерция моменті:

;

;

.

мұнда тш. - шатун массасы; тл.к. - поршендік комплекстің массасы.







Дата добавления: 2015-10-19; просмотров: 1011. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия