Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Чистый сдвиг и его особенности





 

Чистым сдвигом называется такой вид плоского напряженного состояния, при котором по граням элементарного параллелепипеда, выделенного в окрестности рассматриваемой точки, действуют одни лишь касательные напряжения.

В качестве примера такого напряженного состояния можно рассмотреть тонкостенную цилиндрическую трубку, нагруженную по торцам парами сил (рис.7.2). Рассечем её плоскостью А, отбросим верхнюю часть и покажем оставшуюся нижнюю часть. В сечении действуют касательные напряжения τ, величина которых определится из условия равенства момента равномерно распределенных по сечению внутренних сил внешнему моменту М0: , где R – средний радиус трубки, δ – её толщина.

Нормальных напряжений в этом сечении не будет. Вырежем из стенки бесконечно малый элемент в виде кубика. На его нижней грани будут действовать касательные напряжения такие же, как и на верхней, но в противоположном направлении. На передней и задней стенках напряжений нет. Так как элемент должен находиться в равновесии, то на боковых стенках также должны быть касательные напряжения, которые создают пару сил, но направленную в противоположную сторону.

При чистом сдвиге длины ребер элементарного параллелепипеда не изменяются, а изменяются углы между гранями (рис. 7.3). Верхняя грань параллелепипеда перемещается относительно противоположной грани на величину δ, называемую абсолютным сдвигом.

 

маций tgγ = γ, тогда = γ(рад).

Как показывает опыт, угол сдвига γ прямо пропорционален касательным напряжениям. Эта зависимость между γ и τ называется законом Гука при сдвиге и записывается выражением

, или . (7.2)

Коэффициент пропорциональности G называется модулем сдвига (или модулем упругости второго рода). Он как и модуль продольной упругости Е измеряется в паскалях (Па) или в мегапаскалях (МПа).

 







Дата добавления: 2015-10-19; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия