Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поперечного сечения





А
·А
Задачи определения напряжений и деформаций при кручении брусьев некруглого поперечного сечения нельзя решить методами сопротивления материалов. Эти задачи рассматриваются в теории упругости. Причина этого в том, что у таких брусьев гипотеза плоских сечений не применима, так как поперечные сечения заметно искривляются, что и приводит к существенному изменению распределения напряжений.

Рис. 7.12
б)
а)
б)
Отметим некоторые закономерности распределения напряжений в сечениях некруглой формы, а затем приведем готовые решения, полученные методами теории упругости для некоторых форм поперечных сечений. Прежде всего, покажем, что касательные напряжения в поперечных сечениях для точек вблизи контура направлены по касательной к нему. Для этого
Рис.7.12
положим, что в некоторой точке А касательное напряжение τ направлено под углом, тогда его можно разложить по направлениям касательной и нормали к контуру сечения (7.12, а). По закону парности касательных напряжений на поверхности стержня должно возникнуть напряжение , но эта поверхность свободна от нагрузки, следовательно, , направлено по касательной к контуру.

Аналогично можно показать, что в сечении с внешними углами напряжения равны нулю. Разложим напряжения вблизи угла на две составляющие и (7.12,б), так как парные им напряжения и равны нулю, то и в ноль обращаются и . Значит, вблизи внешнего угла касательные напряжения в поперечном сечении отсутствуют.

На рис. 7.13 показана эпюра касательных напряжений для бруса прямоугольного сечения, полученная методами теории упругости. Как видим, в углах напряжения равны нулю, а наибольшей величины они достигают в точках А по средине больших сторон:

, (7.15)

Рис.7.13
в точках В касательные напряжения вычисляются по формуле: .

Здесь h – размер большой стороны, b – размер меньшей

стороны прямоугольника.

Коэффициенты α, β и η зависят от отношения сторон h/b.

Угол закручивания находится из выражения . (7.16)

Коэффициент так же является функцией отношения сторон. При h/b≥10 .

Таблица

h/b   1,5 1,75   2,5          
α 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,299 0,307 0,313 0,333
β 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,299 0,307 0,313 0,333
η 1, 00 0,859 0,82 0,795 0,766 0,753 0,745 0,743 0,742 0,742  

Для формул (7.15), (7.16) введем геометрические параметры:

,

тогда они примут вид







Дата добавления: 2015-10-19; просмотров: 378. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия