Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физиология





Предшественником Т4 и Тз является аминокислота L-тирозин. Присоединение йода к фенольному кольцу тирозина обеспечивает образование моно- или дийодтирозинов. Если к тирозину с помощью эфирной связи присоединяется второе фенольное кольцо, то образуется тиронин. К каждому из двух или сразу к обоим фенольным кольцам тиронина может примкнуть один или два атома йода в мета-положении по отношению к аминокислотному остатку. Т4 представляет собой 3,5,3,5-тетрайодтиронин, а Тз - 3,5,3-трийодтиронин, т. е. содержит меньше на один атом йода в "наружном" (лишенном аминокислотной группировки) кольце. При удалении атома йода из "внутреннего" кольца Т4 превращаются в 3,3´,5´-трийодтиронин или в обратный (реверсивный) Тз (рТз). Дийодтиронин может существовать в трех формах (3´,5´-Т2, 3.5-Т2 или 3,3´-Т2). При отщеплении от Т4 или Тз аминогруппы образуются соответственно тетрайод- и трийодтироуксусные кислоты. Значительная гибкость пространственной структуры молекулы тиреоидных гормонов, определяемой поворотом обоих колец тиронина по отношению к аланиновой части, играет существенную роль во взаимодействии этих ормонов со связывающими белками плазмы крови и клеточными рецепторами. Основным природным источником йода служат морские продукты. Миниальная суточная потребность в йоде (в пересчете на йодид) для человека - около 80 мкг, но в отдельных местностях, где с профилактической целью примеряется йодированная соль, потребление иодида может достигать 500 мкг в сутки. Содержание иодида определяется не только тем его количеством, которое поступает из желудочно-кишечного тракта, но и "утечкой" из щитовидной железы (в форме около 100 мкг в сутки), а также периферическим дейодированием йодтиронинов.

Щитовидная железа обладает способностью концентрировать йодид из плазмы крови. Аналогичной способностью обладают и другие ткани, например, лизистая желудка и слюнные железы. Процесс переноса иодида в фолликуляр-эпителий энергозависим, насыщаем и осуществляется сопряженно с обратной транспортировкой натрия мембранной натрий-калий-аденозинтрифосфатазой (АТФазой). Система перемещения иодида не строго специфична и обусловливает доставку в клетку ряда других анионов (перхлорат, пертехнетат и тиоцианат), которые являются конкурентными ингибиторами процесса накопления йодида в щитовидной железе.

Помимо йода, составной частью тиреоидных гормонов является тиронин, образующийся в недрах молекулы белка - тиреоглобулина. го синтез происходит в тиреоцитах. На долю тиреоглобулина приходится 75% сего содержащегося и 50% синтезирующегося в каждый данный момент белка щитовидной железе. Йодид, попавший внутрь клетки, окисляется и ковалентно присоединяется к остаткам тирозина в молекуле тиреоглобулина. Как окисление, так и йодирование тирозильных остатков катализируются присутствующей в клетке пероксидазой. Хотя активная форма йода, йодирующая белок, точно неизвестна, но прежде чем произойдет такое йодирование (то есть процесс органификации йода) должна образоваться перекись водорода. По всей вероятности, она продуцируется НАД • Н-цитохромом В- или НАДФ • Н-цитохром С-редуктазой. Йодированию подвергаются как тирозильные, так и монойодтирозильные остатки в молекуле тиреоглобулина. На этот процесс влияет природа рядом расположенных аминокислот, а также третичная конформация тиреоглобулина. Пероксидаза представляет собой мембранно-связанный ферментный комплекс, простетическую группу которого образует гем. Гематиновая группировка абсолютно необходима для проявления активности фермента. Йодирование аминокислот предшествует их конденсации, т. е. образованию тирониновых структур. Последняя реакция требует присутствия кислорода и может осуществляться через промежуточное образование активного метаболита йодтирозина, например, пировиноградной кислоты, которая затем присоединяется к йодтирозильному остатку в составе тиреоглобулина. Независимо от того, какой именно механизм конденсации существует, эта реакция также катализируется тиреоидной пероксидазой.

Молекулярная масса зрелого тиреоглобулина 660 000 (коэффициент седиментации - 19). Он обладает, по-видимому, уникальной третичной структурой, способствующей конденсации йодтирозильных остатков. Действительно, содержание тирозина в этом белке мало отличается от такового в других белках, причем йодирование тирозильных остатков может происходить в любом из них. Однако реакция конденсации осуществляется с достаточно высокой эффективностью, вероятно, только в тиреоглобулине.

Содержание йодаминокислот в нативном тиреоглобулине зависит от доступности йода. В норме тиреоглобулин содержит 0,5 % йода в составе 6 остатков монойодтирозина (МИТ), 4 - дийодтирозина (ДИТ), 2 - Т4 и 0,2 - Т3 на молекулу белка. Обратный Тз и дийодтиронины присутствуют в очень малых количествах. Однако в условиях дефицита йода эти соотношения нарушаются: возрастают отношения МИТ/ДИТ и Тз/Т4, что рассматривают как активное приспособление гормоногенеза в щитовидной железе к дефициту йода, поскольку Т3 обладает большей метаболической активностью по сравнению с Т4.

Последовательность синтеза тиреоглобулина в фолликулярной клетке щитовидной железы происходит так. Весь процесс направлен в одну сторону: от базальной мембраны к апикальной и далее - в коллоидное пространство. Образование свободных тиреоидных гормонов и поступление их в кровь предполагает существование и обратного процесса. Последний складывается из ряда этапов. Вначале содержащийся в коллоиде тиреоглобулин захватывается отростками микроворсинок апикальной мембраны, образующими пузырьки пиноцитоза. Они перемещаются в цитоплазму фолликулярной клетки, где их называют коллоидными каплями. В свою очередь они сплавляются с микросомами, образуя фаголизосомы, и в их составе мигрируют к базальной клеточной мембране. В ходе этого процесса происходит протеолиз тиреоглобулина, во время которого образуются Т4 и Тз. Последние диффундируют из фолликулярной клетки в кровь. В самой клетке происходит также частичное дейодирование Т4 с образованней Т3. В кровь попадает и некоторая часть йодтирозинов, йода и небольшое количество тиреоглобулина. Последнее обстоятельство имеет существенное значение для осмысливания патогенеза аутоиммунных заболеваний щитовидной железы, для которых характерно присутствие в крови антител к тирео-глобулину. В отличие от прежних представлений, согласно которым образование таких аутоантител связывали с повреждением тиреоидной ткани и попаданием тиреоглобулина в кровь, в настоящее время доказано, что тиреоглобулин поступает туда и в норме.

В процессе внутриклеточного протеолиза тиреоглобулина в цитоплазму фолликулярной клетки проникают не только йодтиронины, но и содержащиеся в белке в большом количестве йодтирозины. Однако в отличие от Т4 и Тз они быстро дейодируются ферментом, присутствующим в микросомной фракции, с образованием йодида. Большая часть последнего подвергается в щитовидной железе утилизации, но некоторое его количество все же выходит из клетки в кровь. Дейодирование йодтирозинов обеспечивает в 2-3 раза больше йодида для нового синтеза тиреоидных гормонов, чем транспортировка этого аниона из плазмы крови в щитовидную железу, и поэтому играет основную роль в поддержании синтеза йодтиронинов.

За сутки щитовидная железа продуцирует примерно 80-100 мкг Т4. Период полужизни этого соединения в крови составляет 6-7 дней. Ежесуточно в организме распадается около 10% секретируемого Т4. Скорость его деградации, как и Тз, зависит от их связывания с белками сыворотки и тканей. В нормальных условиях более 99,95% присутствующего в крови Т4 и более 99,5% Тз связано с белками плазмы. Последние выступают в роли буфера уровня свободных тиреоидных гормонов и одновременно служат как бы местом их хранения. На распределение Т4 и Т3 среди различных связывающих белков влияют рН и ионный состав плазмы. В плазме примерно 80% Т4 скомплексировано с тироксинсвязывающим глобулином (ТСГ), 15% - с тироксинсвязывающим преальбумином (ТСПА), а остальная часть - с альбумином сыворотки. ТСГ связывает и 90% Тз, а ТСПА - 5% этого гормона. Принято считать, что метаболически активной является только та ничтожная доля тиреоидных гормонов, которая не присоединена к белкам и способна к диффузии через клеточную мембрану. В абсолютных цифрах количество свободного Т4 в сыворотке составляет около 2 нг%, а Тз - 0,2 нг%. Однако в последнее время получен ряд данных о возможной метаболической активности и той части тиреоидных гормонов, которая связана с ТСПА.´ Не исключено, что ТСПА является необходимым посредником в передаче гормонального сигнала из крови в клетки.

ТСГ имеет молекулярную массу 63 000 дальтон и представляет собой глико-протеин, синтезируемый в печени. Его сродство к Т4 примерно в 10 раз выше, чем к Тз. Углеводный компонент ТСГ представлен сиаловой кислотой и играет существенную роль в комплексировании гормонов. Печеночная продукция ТСГ стимулируется эстрогенами и тормозится андрогенами и большими дозами глюкокортикоидов. Кроме того, существуют врожденные аномалии продукции этого белка, которые могут сказаться на общей концентрации тиреоидных гормонов в сыворотке крови.

Молекулярная масса ТСПА 55 000. В настоящее время установлена полная первичная структура этого белка. Его пространственная конфигурация определяет существование проходящего через центр молекулы канала, в котором расположены два одинаковых связывающих места. Комплексирование Т4 с одним из них резко снижает сродство второго к гормону. Подобно ТСГ, ТСПА обладает гораздо большим сродством к Т4, чем к Тз. Интересно, что другие участки ТСПА способны связывать небольшой по размеру (21 000) белок, специфически взаимодействующий с витамином А. Присоединение этого белка стабилизирует комплекс ТСПА с Т4. Важно отметить, что тяжелые нетиреоидные заболевания, а также голодание сопровождаются быстрым и значительным падением уровня ТСПА в сыворотке.

Сывороточный альбумин имеет наименьшее из перечисленных белков сродство к тиреоидным гормонам. Поскольку в норме с альбумином связано не более 5% общего количества присутствующих в сыворотке тиреоидных гормонов, изменение его уровня лишь очень слабо влияет на концентрацию последних.

Соединение гормонов с белками сыворотки крови не только предотвращает биологические эффекты Тз и Т4, но и в значительной степени замедляет скорость их деградации. До 80% Т4 метаболизируется путем монодейодирования. В случае отщепления атома йода в 5´-м положении образуется Тз, обладающий гораздо большей биологической активностью; при отщеплении йода в положении 5 образуется рТз, биологическая активность которого крайне незначительна. Монодейодирование Т4 в том или ином положении является не случайным процессом, а регулируется рядом факторов. Однако в норме дейодирование в обоих положениях протекает обычно с равной скоростью. Небольшие количества Т4 подвергаются дезаминированию и декарбоксилированию с образованием тетрайодтироуксусной кислоты, а также конъюгированию с серной и глюкуроновой кислотами (в печени) с последующей экскрецией конъюгатов с желчью.

Монодейодирование Т4 вне щитовидной железы служит основным источником Т3 в организме. Этот процесс обеспечивает почти 80% из 20-30 мкг Т3, образующегося за сутки. Таким образом на долю секреции Тз щитовидной железой приходится не более 20% его суточной продукции. Внетиреоидное образование Т3 из Т4 катализируется Т4-5´-дейодиназой. Фермент локализуется в клеточных микросомах и требует в качестве кофактора восстановленных сульфгидных групп. Считают, что основное превращение Т4 в Т3 происходит в тканях ни и почек. Тз слабее, чем Т4, связан с белками сыворотки, поэтому подвергается более быстрой деградации. Период его полужизни в крови составляет около. Он превращается преимущественно в 3,3´-Т2 и 3,5-Т2; образуются и небольшие количества трийодтироуксусной и трийодтиропропионовой кислот, а не конъюгатов с серной и глюкуроновой кислотами. Все эти соединения практически лишены биологической активности. Различные дийодтиронины превращаются затем в монойодтиронины и, наконец, в свободный тиронин, который обнаруживается в моче.

Тиреоидные гормоны обладают широким спектром действия, но больше всего их влияние сказывается на клеточном ядре. Они могут непосредственно воздействовать и на процессы, протекающие в митохондриях, а также в клеточной мембране. У млекопитающих и человека тиреоидные гормоны особенно важны для развития ЦНС и для роста организма в целом.

Давно известно стимулирующее действие этих гормонов на скорость потребления кислорода (калоригенный эффект) всем организмом, а также отдельными тканями и субклеточными фракциями. Существенную роль в механизме физиологического калоригенного эффекта Т4 и Тз может играть стимуляция синтеза таких ферментых белков, которые в процессе своего функционирования используют энергию аденозинтрифосфата (АТФ), например, чувствительной к оубаину мембранной натрий-калий-АТФ-азы, препятствующей внутриклеточному накоплению ионов натрия. Тиреоидные гормоны в сочетании с адреналином и инсулином способны непосредственно повышать захват кальция клетками и увеличивать концентрацию в них циклической аденозинмонофосфорной кислоты МФ), а также транспорт аминокислот и сахаров через клеточную мембрану.

Особую роль играют тиреоидные гормоны в регуляции функции сердечно-сосудистой системы. Тахикардия при тиреотоксикозе и брадикардия при гипотиреозе характерные признаки нарушения тиреоидного статуса. Эти (равно как многие другие) проявления заболеваний щитовидной железы долгое время относили за счет повышения симпатического тонуса под действием тиреоидных гормонов. Однако в настоящее время доказано, что избыточное содержание последних в организме приводит к снижению синтеза адреналина и норадреналина в надпочечниках и уменьшению концентрации катехоламинов в крови. При гипотиреозе концентрация катехоламинов возрастает. Не получили подтверждения и данные о замедлении деградации катехоламинов в условиях избыточного содержания тиреоидных гормонов в организме. Вероятнее всего, что за счет непосредственного (без участия адренергических механизмов) действия тиреоидных гормонов на ткани меняется чувствительность последних к катехоламинам и медиаторам парасимпатических влияний. Действительно, при гипотиреозе описано увеличение числа b-адренорецепторов в ряде тканей (в том числе сердце). Механизмы проникновения тиреоидных гормонов в клетки изучены недостаточно. Независимо от того, имеет ли здесь место пассивная диффузия или активный транспорт, эти гормоны проникают в клетки-"мишени" достаточно быстро. Связывающие места для Тз и Т4 обнаружены не только в цитоплазме, митохондриях и ядре, но и на клеточной мембране, однако именно в ядерном хроматине клеток содержатся участки, в наибольшей степени удовлетворяющие критериям гормональных рецепторов. Сродство соответствующих белков к различным аналогам Т4 обычно пропорционально биологической активности последних. Степень занятости таких участков в ряде случаев пропорциональна и величине клеточной реакции на гормон. Связывание тиреоидных гормонов (преимущественно Тз) в ядре осуществляется негистоновыми белками хроматина, молекулярная масса которых после солюбилизации примерно 50 000. Для ядерного действия тиреоидных гормонов, по всей вероятности, не требуется предварительного взаимодействия с белками цитозоля, как это описано для стероидных гормонов. Концентрация ядерных рецепторов обычно особенно велика в тканях, известных своей чувствительностью к тиреоидным гормонам (передняя доля гипофиза, печень), и очень низка в селезенке и семенниках, которые, по имеющимся данным, не реагируют на Т4 и Т3.

После взаимодействия тиреоидных гормонов с рецепторами хроматина достаточно быстро возрастает активность РНК-полимеразы и увеличивается образование высокомолекулярной РНК. Показано, что, помимо генерализованного влияния на геном, Т3 может избирательно стимулировать синтез РНК, кодирующих образование специфических белков, например, 02-макроглобулина в печени, гормона роста в питуицитах и, возможно, митохондриального фермента a-глицерофосфатдегидрогеназы и цитоплазматического малик-фермента. При физиологической концентрации гормонов ядерные рецепторы более чем на 90% связаны с Т3, тогда как Т4 присутствует в комплексе с рецепторами в очень небольшом количестве. Это оправдывает мнение о Т4 как и прогормоне и о Тз как об истинном тиреоидном гормоне.

Т4 и Тз может осуществляться не только ТТГ гипофиза, но и другими факторами, в частности, концентрацией йодида. Однако главным регулятором активности щитовидной железы служит все-таки ТТГ, секреция которого находится под двойным контролем: со стороны гипоталамического ТРГ и периферических тиреоидных гормонов. В случае повышения концентрации последних реакция ТТГ на ТРГ подавляется. Секреция ТТГ тормозится не только Тз и Т4, но и гипоталамическими факторами - соматостатином и дофамином. Взаимодействие всех этих факторов и определяет весьма тонкую физиологическую регуляцию тиреоидной функции в соответствии с меняющимися потребностями организма.

ТТГ представляет собой гликопептид с молекулярной массой 28 000. Он состоит из 2 пептидных цепей (субъединиц), связанных нековалентными силами, и содержит 15% углеводов; a-субъединица ТТГ не отличается от таковой в других полипептидных гормонах (ЛГ, ФСГ, хорионический гонадотропин). Биологическая активность и специфичность ТТГ обусловливается его b-субъединицей, которая отдельно синтезируется тиреотрофами гипофиза и впоследствии присоединяется к a-субъединице. Это взаимодействие происходит достаточно быстро после синтеза, так как секреторные гранулы в тиреотрофах содержат в основном готовый гормон. Однако небольшое количество отдельных субъединиц может выделяться под действием ТРГ в неравновесном соотношении.

Гипофизарная секреция ТТГ очень чувствительна к изменениям концентрации Т4 и Тз в сыворотке крови. Снижение или повышение этой концентрации даже на 15-20% приводит к реципрокным сдвигам в секреции ТТГ и его реакции на экзогенный ТРГ. Активность Т4-5-дейодиназы в гипофизе особенно высока, поэтому сывороточный Т4 в нем превращается в Тз более активно, чем в других органах. Вероятно, именно поэтому снижение уровня Т3 (при сохранении нормальной концентрации Т4 в сыворотке), регистрируемое при тяжелых нетиреоидных заболеваниях, редко приводит к повышению секреции ТТГ. Тиреоидиные гормоны снижают число рецепторов ТРГ в гипофизе, причем их тормозящее влияние на секрецию ТТГ лишь частично блокируется ингибиторами белкового синтеза. Максимальное торможение секреции ТТГ возникает спустя длительное время после достижения максимальной концентрации Т4 и Т3 в сыворотке. И наоборот, резкое падение уровня тиреоидных гормонов после удаления щитовидной железы приводит к восстановлению базальной секреции ТТГ и его реакции на ТРГ лишь через несколько месяцев или даже позднее. Это необходимо принимать по внимание при оценке состояния гипофиадрно-тиреоидной оси у больных, подвергающихся лечению по поводу заболеваний щитовидной железы.

Гипоталамический стимулятор секреции ТТГ - тиреолиберин (трипептид пироглютамилгистидилпролинамид) - в наибольшей концентрации присутствует в срединном возвышении и аркуатном ядре. Однако он обнаруживается и в других участках мозга, а также в желудочно-кишечном тракте и панкреатических островках, где его функция мало изучена. Подобно другим пептидным гормонам ТРГ взаимодействует с мембранными рецепторами питуицитов. Их число уменьшается не только под действием тиреоидных гормонов, но и при повышении уровня самого ТРГ ("снижающая регуляция"). Экзогенный ТРГ стимулирует секрецию не только ТТГ, но и пролактина, а у некоторых больных акромегалией и хроническими нарушениями функций печени и почек, и образование гормона роста. Однако роль ТРГ в физиологической регуляции секреции этих гормонов не установлена. Время полужизни экзогенного ТРГ в сыворотке человека весьма невелико - 4-5 мин. Тиреоидные гормоны, вероятно, не влияют на его секрецию, но проблема регуляции последней остается практически неизученной.

Помимо упоминавшегося тормозного влияния соматостатина и дофамина на секрецию ТТГ, она модулируется рядом стероидных гормонов. Так, эстрогены и оральные контрацептивы увеличивают реакцию ТТГ на ТРГ (возможно, за счет повышения числа рецепторов ТРГ на мембране клеток передней доли гипофиза), ограничивают тормозное действие дофаминергических средств и тиреоидных гормонов. Фармакологические дозы глюкокортикоидов снижают базальную секрецию ТТГ, его реакцию на ТРГ и подъем его уровня в вечерние часы суток. Однако физиологическое значение всех этих модуляторов секреции ТТГ неизвестно.

Таким образом, в системе регуляции функции щитовидной железы центральное место занимают тиреотрофы передней доли гипофиза, секретирующие ТТГ. Последний контролирует большинство метаболических процессов в тиреоидной паренхиме. Его основной острый эффект сводится к стимуляции продукции и секреции тиреоидных гормонов, а хронический - к гипертрофии и гиперплазии щитовидной железы.

На поверхности мембраны тиреоцитов присутствуют специфичные для a-субъединицы ТТГ рецепторы. После взаимодействия гормона с ними разворачивается более или менее стандартная для полипептидных гормонов последовательность реакций. Гормон-рецепторный комплекс активирует аденилатциклазу, расположенную на внутренней поверхности клеточной мембраны. Белок, связывающий гуаниловые нуклеотиды, по всей вероятности, играет сопрягающую роль во взаимодействии гормон-рецепторного комплекса и фермента. Фактором, определяющим стимулирующее влияние рецептора на циклазу, может явиться р-субъединица гормона. Многие эффекты ТТГ, по-видимому, опосредуются образованием цАМФ из АТФ под действием аденилатциклазы. Хотя повторно введенный ТТГ продолжает связываться с рецепторами тиреоцитов, щитовидная железа в течение определенного периода оказывается рефрактерной к повторным введениям гормона. Механизм этой ауторегуляции реакции цАМФ на ТТГ неизвестен.

Образующийся под действием ТТГ цАМФ взаимодействует в цитозоле с цАМФ-связывающими субъединицами протеинкиназ, приводя к их отделению от каталитических субъединиц и активации последних, т. е. к фосфорилированию ряда белковых субстратов, что меняет их активность и тем самым метаболизм всей клетки. В щитовидной железе присутствуют и фосфатазы фосфопротеинов, восстанавливающие состояние соответствующих белков. Хроническое действие ТТГ приводит к увеличению объема и высоты тиреоидного эпителия; затем возрастает и число фолликулярных клеток, что обусловливает их выпячивание в коллоидное пространство. В культуре тиреоцитов ТТГ способствует формированию микрофолликулярных структур.

ТТГ вначале снижает йодидконцентрирующую способность щитовидной железы, вероятно, за счет опосредованного цАМФ увеличения мембранной проницаемости, сопровождающего деполяризацию мембраны. Однако хроническое действие ТТГ резко повышает поглощение йодида, на что, по-видимому, косвенно влияет усиление синтеза молекул переносчика. Большие дозы йодида не только сами по себе ингибируют транспорт и органификацию последнего, но и снижают реакцию цАМФ на ТТГ, хотя и не меняют его действия на синтез белка в щитовидной железе.

ТТГ непосредственно стимулирует синтез и йодирование тиреоглобулина. Под действием ТТГ быстро и резко возрастает потребление кислорода щитовидной железой, что, вероятно, связано не столько с повышением активности окислительных ферментов, сколько с увеличением доступности адениндифосфорной кислоты - АДФ. ТТГ увеличивает общий уровень пиридиннуклеотидов в ткани щитовидной железы, ускоряет кругооборот и синтез фосфолипидов в ней, повышает активность фосфолипазы А2, что сказывается на количестве предшественника простагландинов - арахидоновой кислоты.

Катехоламины стимулируют активность тиреоидных аденилатциклазы и протеинкиназ, но их специфические эффекты (стимуляция образования коллоидных капель и секреции Т4 и Т3) наглядно проявляются лишь на фоне сниженного содержания ТТГ. Помимо действия на тиреоциты, катехоламины влияют на кровоток в щитовидной железе и изменяют обмен тиреоидных гормонов на периферии, что в свою очередь может сказываться на ее секреторной функции.







Дата добавления: 2015-10-18; просмотров: 1260. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия