Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

В этой точке выполнялись условия





,(2)

называемые условиями Коши-Римана (С-R) или Даламбера-Эйлера.

При выполнении условий (C-R) производная функции может быть найдена по одной из следующих формул:

(3)

Приведем два определения, имеющих фундаментальное значение в теории функции комплексного переменного.

Определение. Однозначная функция называется аналитической в точке , если она дифференцируема в некоторой окрестности точки .

Определение. Функция называется аналитической в области, если она дифференцируема в каждой точке этой области.

Аналитичность функции в точке и дифференцируемость в точке – разные понятия. Если функция аналитична в точке, то она, безусловно, дифференцируема в ней, но обратное может и не иметь места. Функция может быть дифференцируема в точке, но не быть дифференцируемой ни в какой окрестности этой точки, в таком случае она не будет аналитической в рассматриваемой точке.

Условием аналитичности функции в области является выполнимость условий Коши-Римана для всех точек этой области.

Пример. Выясним, является ли аналитичнойфункция .

Так как ,имеем . Отсюда

, .

Проверим выполнение условий (C-R):

,

.

Условия (C-R) выполняются при любых конечных х и у, значит функция аналитична во всей комплексной плоскости (кроме ).●

Определение. Точки, в которых является аналитической, называются регулярными (правильными). Если аналитична в , за исключением некоторых точек, то эти точки называются особыми. Точка называется изолированной особой точкой, если вокруг нее можно описать круг, не содержащий других особых точек.

Геометрический смысл модуля и аргумента производной. Пусть функция дифференцируема в области и . Функция отобразит точку плоскости в точку плоскости , кривую , проходящую через точку в кривую , проходящую через .

Модуль производной есть предел отношения бесконечно малого расстояния между отображенными точками и к бесконечно малому расстоянию между их прообразами и . Поэтому величину можно рассматривать геометрически как коэффициент растяжения (если ) в точке при отображении области в области , осуществляемом функцией . В каждой точке области в каждом направлении коэффициент растяжения будет свой.

 

Для аргумента производной можно записать

,

где и это углы и , которые векторы и образуют с действительной осью.

Пусть и углы, образованные касательными к кривой и в точках и с действительной осью. Тогда при , а , поэтому определяет угол, на который нужно повернуть касательную к кривой в точке , чтобы получить направление к касательной к кривой в точке .

Таким образом, геометрический смысл модуля и аргумента производной состоит в том, что при отображении, осуществляемом аналитической функцией, удовлетворяющей условию , модуль k определяет коэффициент преобразования подобия бесконечно малого линейного элемента в точке ,а аргументпроизводной определяет угол поворота этого элемента.

Если рассмотреть две кривые и , и , то углы и между их касательными, вообще говоря, неравные.

Определение. Отображение области на область , обладающее свойствами постоянства растяжений () в любом направлении и сохранения (или консерватизма) углов между двумя кривыми, пересекающимися в точке , называется конформным (подобным в малом).

Отображение, осуществляемое аналитической функцией, является конформным во всех точках, в которых .

Например, функция задает отображение, которое является конформным во всех точках, кроме точки (0; 0).







Дата добавления: 2015-10-18; просмотров: 564. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия